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Abstract

The Department of Defense (DoD) enlists multiple complex systems across each of

their departments. Between the aging systems going through an overhaul and emerging

new systems, quality assurance to complete the mission and secure the nation‘s objectives

is an absolute necessity. The U.S. Air Force‘s increased interest in Remotely Piloted

Aircraft (RPA) and the Space Warfighting domain are current examples of complex

systems that must maintain high reliability and sustainability in order to complete missions

moving forward. DoD systems continue to grow in complexity with an increasing number

of components and parts in more complex arrangements. Bathtub-shaped hazard functions

arise from the existence of multiple competing failure modes which dominate at different

periods in a systems lifecycle. The standard method for modeling the infant mortality,

useful-life, and end-of-life wear-out failures depicted in a bathtub-curve is the Weibull

distribution. However, this will only model one or the other, and not all three at once. The

poly-Weibull distribution arises naturally in scenarios of competing risks as it describes

the minimum of several independent random variables where each follows a distinct

Weibull law. Little is currently known or has been developed for the poly-Weibull

distribution. In this report, the poly-Weibull is compared against other goodness-of-fit

models to model these completing multimodal failures. An equation to determine the

moments for the poly-Weibull is derived leading to the development of properties such as

the mean, variance, skewness, and kurtosis using Maximum Likelihood Estimation (MLE)

parameters obtained from a data set with known bathtub shaped hazard function.
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MODELING MULTIMODAL FAILURE EFFECTS OF COMPLEX SYSTEMS USING

POLYWEIBULL DISTRIBUTION

I. Introduction

The United States Department of Defense (DoD) acquires and supports many

complex systems each containing multiple potential failure modes. Many aging systems

are undergoing an overhaul while numerous new systems are simultaneously emerging.

Reliability of these systems ensures mission success, which results in multiple cost

savings. The warfighting domain is changing and defense systems will continue to grow

in complexity, which suggests that the number of embedded potential failure modes will

also increase. In an effort to maintain its standing as the dominant military leader and

protect the nation‘s interests, the United States will need to be prepared and ensure all

defense systems are reliable and fully functional to complete the mission, despite the

increasing complexity and challenges that lie ahead.

Reliability is defined as the probability that a component or system will perform a

required function for a given period of time when used under stated operating conditions.

Mathematically, this is expressed by the reliability function, R(t), as

R(t) = Pr(T > t) 3 T ≥ 0 (1.1)

where t is the time of interest. Since a system must be in either failed state or a working

state at time t, the probability that a failure occurs before a time t is given by

F(t) = 1 − R(t), (1.2)
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known as the Cumulative Distribution Function (CDF). The Probability Density

Function (PDF) (where it exists) is simply the derivative of the CDF,

f (t) =
d
dt

F(t) (1.3)

From the PDF and Reliability function, the hazard function can be determined. The

hazard function is defined as:

h(t) =
f (t)
R(t)

(1.4)

Ebeling [1] states that the definition of system reliability must be made specific to

determine reliability, in the operational sense. By that, he says that an unambiguous and

observable description of failure must be established, a unit of time must be identified, and

the system should be observed under normal performance. For systems, reliability can be

found by first determining whether the system is in series or parallel. A system is

considered series when all components must operate in a satisfactory manner if the system

is to function properly [2]. The common diagram is shown in Figure 1.1.

Figure 1.1: Series Example

where R1,R2,RN is the reliability of each respective component. Eq. 1.5 is used to

determine the reliability of a system in series.

Rs(t) =

n∏
i=1

Ri(t) (1.5)

A system is considered parallel when several of the same components are in parallel and

each must fail to cause system failure. A common diagram for a system in parallel is

shown in Figure 1.2.

2



Figure 1.2: Parallel Example

where R1,R2,RN is the reliability of each respective component. Components can be both

in series and parallel. Eq. 1.6 is used to determine the reliability of a system in parallel.

Rp(t) = 1 −
n∏

i=1

[1 − Ri(t)] (1.6)

For many systems, the subsystems are in any combination of series and parallel resulting

in a combination of Eqs. 1.5 & 1.6. The more parallel components and subsystems that

exist, the better the reliability. However, complex systems seldom exists in a parallel

format. Each subsystem may have subsystems of their own, which are also in any

combination of parallel and series all the way down to the component level. However, at

the macro level everything tends to be in series, even if it is composed of multiple parallel

subsystems. Consider a simple view of an aircraft, which consists of wings, an engine, a

fuselage, a rudder, and controls. Each of these is a system by themselves with subsystems

and components of their own, which are in series and parallel yet the aircraft depends on

each of them. If any one of them fails, the aircraft may fail to perform its required

function under its stated operating conditions.

Complex systems contain numerous subsystems and components with multiple

failure modes. Each failure mode ultimately competes to see which occurs first and

prevents the system from performing as it should; most failures tend to occur early or late

3



in the systems life. Complex systems ultimately operate as a series because they depend

on so many pieces to function properly, that each parallel component does not impact the

overall reliability by much. There are multiple dependencies throughout complex systems

that any one component or subsystem failure ultimately leads to systems failure.

Component reliability may be viewed with a simple diagram, such as any of the examples

in Figure 1.3

Figure 1.3: Basic Series/Parallel Examples

When the components are grouped into each subsystem, the diagrams grow in complexity

as shown in Figure 1.4. A more complex component may have more fail-safes in the

design. At this level, a parallel reliability model will have more impact. As complex

components begin to be assembled into complex subsystems, these fail-safes become less

apparent in the diagrams. As the subsystems are combined with other subsystems, this

will become even more apparent.

4



Figure 1.4: Generic Combined Series/Parallel Example
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These subsystems will be grouped further into more subsystems such as those shown in

Figure 1.5.

Figure 1.5: Generic Complex Series/Parallel Example

6



The more complex the system becomes, the more complex the diagram becomes (Figure

1.6). When the system is integrated, eventually the diagrams begin to show everything in

series where each subsystem has a reliability of its own and the entire system is dependent

on each subsystem.

Figure 1.6: Generic Complex Series/Parallel Subsystem Example

Estimating system reliability from accelerated test data for systems with multiple

failure modes requires adequate samples to observe each failure mode at multiple stress

levels [3]; separate models may then be developed for each distinct failure mode. The

exact reliability for the overall system can then be determined using Eq. 1.6. Figure 1.7

shows a serial arrangement of flaws within the prototypes subjected to qualitative

accelerated reliability test. The arrangement demonstrates the competing risk assumption

in the model where the time to failure for the prototype is the minimum activation time

among the flaws.

Figure 1.7: Serial Flaws
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It is not common in qualitative testing that an appropriate number of prototypes are

available to account for every possible failure mode that is yet to be discovered during

early system testing. For tests conducted with limited sample sizes, an estimate of system

reliability may be obtained by combining the observations of multiple failure modes to

form a single distribution plot. In such a situation, an unknown number of independent

flaws, denoted as J, compete to be the cause of system failure as shown in Figure 1.7. The

observed lifetime for prototype i is therefore represented as the minimum occurrence time

among the J modes in the system.

The DoD operates the most complex systems in the world in extreme environments

with rapidly changing missions. It is vital that these systems are reliable. However, the

DoD does not have a good track record of fielding reliable systems. Reliability growth is

intended to identify and remove failure modes in developmental testing. Complex systems

consist of multiple components with multiple working parts. Much of reliability entails

quantifying these parts and/or subcomponents. However, if the systems do not perform as

intended in the appropriate environment, this all results in a reliability of zero. Focusing

too much on quantification of the parts in the beginning can cause cost overruns and lead

to delays. Parts reliability is important, but parts failures aren‘t typically to blame for

mission failure. In addition to classifying the appropriate parts, it is necessary to identify

all possible failure modes and the potential outcome and mitigation strategies should that

failure occur. Failure Modes Effects & Analysis (FMEA) is a qualitative method of

identifying failure modes and determining the likelihood of occurrence and establishing

potential mitigation strategies. It was listed in MIL-STD 1629A, though that was

discontinued in 1994. There have been many variations of FMEA over the years but the

concept remains the same. Pisacane describes FMEA in [4] as a bottom-up approach

where low-level failure modes are postulated to determine higher-level effects. FMEA is

recommended to increase reliability, improve designs and quality, while reducing costs.

8



M. Hurley Jr. and W. Purdy in [5] (p.366–375) refer to the parts reliability as a reliability

prediction and how well the system performs in its operational environment as the true

reliability. Further, they emphasize the importance of conducting a FMEA early in the

system design and using that with the reliability prediction for mission success. Failure

Mode, Effects, & Criticality Analysis (FMECA) is taken one step further than the

traditional FMEA by quantifying it with probabilities; it was also part of MIL-STD

1629A. FMECA considers the criticality of each failure mode with respect to the

successful completion of the mission and other standards [6]. This is not only an activity

that can occur at the beginning of the design, FMEA/FMECA can be continuously applied

as it evolves throughout the design of the system. These tools work well at the end of the

process as well to continuously improve existing systems [2].

“The key to developing and fielding military systems with satisfactory

levels of RAM is to recognize it as an integral part of the Systems Engineering

process and to systematically manage the elimination of failures and failure

modes through identification, classification, analysis, and removal or

mitigation.” DoD Guide For Achieving Reliability, Availability, and

Maintainability [7]

Space systems undergo extensive environmental testing prior to launch to identify

possible failures during transport and launch. Additionally, each subsystem will generally

undergo environmental testing to certify that the system will be operational and able to

complete the mission [5]. This is similar to the burn-in testing phase; however, space

systems cannot be fully tested in the lab. FMEA plays an important role in identifying the

potential failures for test.

Operational testing is just as (if not more) important than developmental testing as

mentioned above. If a system cannot perform in the intended environment and complete

its respective mission, then the system has no reliability at all. During operational test, the

9



system can experience failures from competing subsystems and other failure modes not

identified during the developmental testing phase. Many systems continue to fail during

operational testing despite the developmental testing they had undergone.

Often times, over-simplified models are used to predict system reliability which are

not capable of modeling complex systems with multiple failure modes. This becomes

apparent during the operational testing phase of a system, or in some cases, when the

system has become fully operational. There are multiple models that can model multiple

events that exist within a system. The focus of this paper will be to compare some of the

current methods with the poly-Weibull method.

Despite its shortcomings, the Weibull distribution has been regarded as one of the

most useful distributions in reliability [1], leading to the creation of many alternate forms.

Weibull has been successful with modeling constant or monotone, increasing or

decreasing hazard functions. These, however, are not common with complex systems,

which tend to have multiple failure modes resulting in non-monotone hazard functions

and ultimately in what is commonly referred to as a bathtub-curve.

A bathtub-curve (shown in Figure 1.8 [6]) is a useful conceptual model for the hazard

function which shows how products may encounter a majority of the failures either early

or late in their lifetime; with the focus of many reliability studies often being only one or

the other side of the curve [6]. The bathtub-curve is cited in multiple textbooks covering

reliability and maintainability engineering. That being said, there are many who doubt the

overall usefulness of the bathtub-curve to model systems. One group of authors outline [8]

certain cases where the bathtub-curve fails to accurately model the hazard function. In the

article, they provide empirical evidence which suggests where the bathtub-curve fails, and

cite several sources that outline arguments against the bathtub-curve and the usefulness of

burn-in testing. However, many firms and government agencies have used burn-in testing

10



and methods to model their failures with the bathtub-curve, and it continues to be widely

cited and utilized in manufacturing and warranty planning.

Figure 1.8: Bathtub-Curve Hazard Function

The early failures (often referred to as infant mortality) demonstrate a decreasing

failure rate (DFR). These are followed by a nearly constant failure rate (CFR) where

random failures occur, known as the useful life. Lastly, the product will undergo an

increasing failure rate (IFR) known as wearout failures during the end-of-life of the

product [1]. The curve can be demonstrated by a composite of multiple failure

distributions, or even as a function of piecewise linear and CFR‘s [1]. This, however,

could be quite cumbersome when trying to model system reliability. The burden of

modeling the reliability with a composite of multiple failure distributions, or as a

piecewise function of linear and constant failure rates would greatly increase with

complex multimodal failure systems. There are several methods that have been presented

to model the bathtub-curve, many of them centered on the popular Weibull distribution.

11



To model a bathtub-curve the equations would need to be decreasing from time t = t0 and

contain at least one minimum point eventually increasing as t → ∞. Several methods have

been presented to model bathtub failures, however, since the Weibull does a great job

modeling lifetime failure rates, modifications of this form will be examined in this paper.

12



II. Literature Review

2.1 Importance to DoD

Delays and cost overruns continually plague the DoD as funding resources made

available to operate and maintain system can fluctuate from year to year. This fluctuation

provides motivation to implement reliability models and testing strategies to mitigate

these delays and cost overruns. According to [7], the most important Reliability,

Availability, & Maintainability (RAM) activity is to identify potential failures and make

necessary design changes to remove these modes during the system development phase.

Reliability models and proper identification of failure modes will help ensure the design

satisfies the requirements. The cost of implementing system redesigns late in the program

can be reduced when resources are properly allocated and proper testing is achieved.

Testing helps address potential failure modes that may lead to mission failure and discover

appropriate mitigation strategies. Several studies of DoD systems were reviewed in [7]. A

few of the cited reasons why systems fail to achieve RAM requirements are failure to

implement reliability early in the development process, inadequate lower level testing at

component or subcomponent level, inadequate planning for reliability, and ineffective

implementation of reliability tasks in improving reliability. In the time since these reviews

were performed, DoD acquisition systems have become more complex and will continue

to grow in complexity in the future. More systems are being designed with new digital and

electronic intricacies. Guidance has been provided by the DoD in numerous documents,

including [9] and [10]. These standards specify a scientific approach to design and build

reliability into products early on and institutionalize the creation of a comprehensive

reliability growth strategy throughout the acquisition cycle.

The Fiscal Year (FY) 2018 DoD budget amounts to $208.6 billion. This cost includes

$125.2 billion for Procurement funded programs and $83.3 billion for Research,
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Development, Test, & Evaluation (RDT&E) funded programs; directly relating to

reliability systems. In the FY 2018 projected budget, $94.9 billion has been allocated

towards supporting programs that have been designated as Major Defense Acquisition

Programs (MDAPs) [11]. Of the $83.3 billion going to RDT&E, $13.2 billion is

scheduled for Science & Technology (S&T). Particular attention should be given to space

systems within DoD. For the most part, these systems do not undergo maintenance once

they become operational. In particular, spacecraft cannot be retrieved for diagnostics or

repair [4]. Space system designs become very complex and expensive in their ongoing

effort to achieve amazing endeavors [12]. In order to achieve these feats, everything needs

to work to achieve mission success. Space based systems amount to $9.8 billion in the FY

2018 budget, up from $7.1 billion in FY 2017 ([11] [13]).

“The space industry‘s understanding of, and approach to, reliability can

be one of the most important drivers of a programs cost and schedule” M.

Hurley & W. Purdy in [5] p. 366

The U.S. Navy commissioned the USS Gerald Ford (CVN 78) on 22 July 2017; the

first new class of aircraft carriers in 40 years ([14] [15] [16]). The mission of the new class

of aircraft carriers is to provide “The United States with the core capabilities for forward

presence, deterrence, sea control, power projection, maritime security and humanitarian

assistance. The Gerald R. Ford class will be the premier forward asset for crisis response

and early decisive striking power in a major combat operation” [11]. The carrier is largely

automated, reducing the required crew from the Nimitz class by approximately 600 ([14]

[16]). The new Ford class of aircraft carrier has several new state-of-the-art technological

advances such as Electromagnetic-Powered Aircraft Launch System (EMALS), Advanced

Arresting Gear (AAG) system, reduced heat signatures, and several quality of life

improvements for the crew [17]. The technology upgrades from the Nimitz class are

stated such that the ship can essentially drive itself ([14] [15] [16]). Recall the the
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definition of reliability, the probability to perform some function for a given period of time

when used under the stated conditions. If EMALS or AAG fails, the aircraft carrier cannot

take off or land aircraft; if it cannot perform it’s function then then it cannot complete the

mission and thus has a reliability of zero.

These new complex DoD systems will rely more heavily on reliability models to

better predict and plan for failures, resulting in cost savings and a lessened impact on the

mission. More reliable models will allow better planning for maintenance, thus extending

the useful life of the system. CVN 78 is currently still undergoing testing and is expected

to become deployable by 2020. It will be closely followed by more Ford class aircraft

carriers as President Trump has stated that he would like to increase the U.S. Navy’s

aircraft carrier fleet from 11 to 12 [14]. In 2011, Congress mandated a requirement of a

minimum of 11 aircraft carriers. FY 2018 budget allocates $30.4 billion to ship building

and maritime systems ($27 billion FY 2017), which includes construction cost for the first

year of USS Enterprise (CVN 80) and final year of the USS John F. Kennedy (CVN 79)

([11] [13]). With the expected increase in Naval assets and increased complexities of the

ships, reliability and maintainability will need to be a strong consideration to ensure

mission success and prevent delays and cost overruns.

As stated in Chapter 1, complex systems are composed of multiple parts and

components structured in complex arrangements; each having it’s own independent failure

mode and distribution associated with it. Certain failures may dominate during certain

periods of the systems lifecycle which leads to the bathtub shaped hazard function in

Figure 1.8. The Weibull distribution has been used to model complex systems such as the

CVN 78. However, it is often used incorrectly as each failure mode follows a distinct

Weibull law as illustrated in Figure 1.7.

The Weibull distribution was introduced in 1939 by the Swedish physicist Waloddi

Weibull; he discusses a number of applications in [18] published in 1951.The Weibull
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distribution has been regarded as one of the most useful distributions in reliability [1].

However, the distribution has shortcomings that have led to the development of many

alternate forms.

Table 2.1: Weibull Shape Parameters

Value Property

0 < β < 1 DFR

β = 1 CFR, Exponential Distribution

1 < β < 2 IFR, Concave

β = 2 LFR, Rayleigh Distribution

β > 2 IFR, Convex

3 ≤ β ≤ 4 IFR, Approaches Normal Distribution; symmetrical

In this paper, the Weibull distribution is expressed with parameters β and α where β

is a shape parameter and α is a scale parameter. Table 2.1 shows what different values of

the shape parameter may represent. Recall in Chapter 1 how Figure 1.8 illustrated the

bathtub-curve with three phases where each of the three phases was driven by DFR, CFR,

& IFR. Table 2.1 demonstrate how the value for β can lead to the bathtub-shaped hazard

function with enough shape parameters.

f (t|α, β) =
β

α

( t
α

)β−1
exp

[
−

( t
α

)β]
(2.1)

3 α, β > 0, t ≥ 0
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and

F(t|α, β) = 1 − exp
[
−

( t
α

)β]
(2.2)

3 α, β > 0, t ≥ 0. (2.3)

The expected value equation for the Weibull Distributions is given as:

E
[
tk
]

= αΓ

(
1 +

1
β

)
(2.4)

3 α, β > 0, t ≥ 0

where Γ(t) is the gamma function and is given by Γ(k) =
∞∫
0

tk−1 exp[−t]dt. The expected

value equation can be used to determine the first four raw moments which is used to

determine statistical properties such as the mean (µ), variance (Var[t]), skewness (S k[t]),

and kurtosis (κ[t]). The standard deviation is determined from the variance using

σ =
√

Var[t]. In reliability, the mean is often referred to as the Mean Time to

Failure (MTTF). These statistical properties are given in Eqs. 2.5, 2.6, 2.7, & 2.8 shown

below.

MTTF = µ = αΓ

(
1 +

1
β

)
(2.5)

3 α, β > 0, t ≥ 0

Var[t] = α2

Γ

(
1 +

2
β

)
− Γ

(
1 +

1
β

)2
 = σ2 (2.6)

3 α, β > 0, t ≥ 0

S k[t] =
Γ
(
1 + 3

β

)
α3 − 3µVar[t] − µ3

σ3 (2.7)
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3 α, β > 0, t ≥ 0

κ[t] =
Γ
(
1 + 4

β

)
α4 − 4S k[t]σ3µ − 6µ2Var[t] − µ4

σ4 − 3 (2.8)

3 α, β > 0, t ≥ 0

The two-parameter Weibull is sufficient for modeling data produced from individual

failure modes that may be defined as either infant-mortality, useful-life or end-of-life

causes. The Weibull distribution has had great success with modeling failure rates for

which the hazard function is either constant or monotone-increasing or decreasing [6].

When β = 1 , the failure rate is constant and equal to the scale parameter (α) . When β > 1

, the failure rate increases proportionally with time indicating that the failure occurs later

in the system’s life, often due to wear-out. When β < 1 , the failure rate decreases

proportionally with time indicating that failure is more likely to occur early in the

system’s life due to a design or manufacturing flaw; this is commonly referred to as

infant-mortality. These, however, are not common with complex systems which tend to

have multiple failure modes resulting in non-monotone hazard functions. Several

modifications to the Weibull distribution have been developed to model such failure data,

several of these modified distributions are presented in the following section.

2.2 Modified Weibull Distributions

2.2.1 Additive Weibull Distribution.

One particular method presented by Min Xie and Chin Diew Lai in 1995 is known as

the additive Weibull distribution. The concept behind this model is to combine two

Weibull distributions; one with an increasing failure rate and the other with a decreasing

failure rate [19]. Using the same shape and scale parameters, the PDF and CDF are

expressed as,
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f (t|α1, α2, β1, β2) =

(
β1

α1
(α1t)β1−1 +

β2

α2
(α2t)β2−1

)
exp

[
−(α1t)β1 − (α2t)β2

]
3 α1, β1, α2.β2 > 0, t ≥ 0 (2.9)

and

F(t|α1, α2, β1, β2) = 1 − exp
[
−(α1t)β1 − (α2t)β2

]
3 α1, β1, α2, β2 > 0, t ≥ 0. (2.10)

The additive Weibull does not have a closed form to the integral for the mean or variance;

numerical integration is the method suggested in [19] and [20]. Usgaonkar and Mariappan

provide highlights from three case studies using the additive Weibull distribution in [20].

2.2.2 Modified Weibull Distribution.

Another model is the Modified Weibull (MW) Distribution presented in [21] in 2003

by Lai, Xie, and Murthy. This method was derived using a three parameter model and it

stated as being a limiting case of the Beta Integrated Model [21].

The PDF is:

f (t|α, β, λ) = λβ
( t
α

)β−1
exp

[( t
α

)β
+ λα

(
1 − exp

[( t
α

)β])]
3 λ, α, β > 0 t ≥ 0 (2.11)

The CDF is:

F(t|α, β, λ) = 1 − exp
[
λα

(
1 − exp

[( t
α

)β])]
3 λ, α, β > 0 t ≥ 0 (2.12)
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where β is the shape parameter, α is a scale parameter, and λ is an accelerating factor that

Silva et al., state that “it works as a factor of fragility in the survival of the individual

when the time increases” [22]. Just as with the additive Weibull, the modified Weibull

does not have a closed form solution for the mean and variance and thus they must be

solved for using numerical integration or other methods. The modified Weibull

distribution is asymptotically related to the Weibull and exponential distributions and can

be estimated easily either statistically or on Weibull Probability Paper (WPP) plot [21].

2.2.3 Beta Modified Weibull Distribution.

The Beta Modified Weibull (BMW) distribution was introduced by Silva, Ortega, and

Cordeiro; published in Lifetime Data Analysis in 2010. The BMW distribution is

comprised of many significant distributions including the generalized beta Weibull,

exponentiated Weibull, beta exponential, MW and Weibull distributions; all as special

submodels of the BMW [22]. Throughout their journal article, Silva et al. consistently

reference the relationship of the BMW to the MW Distribution discussed earlier; the CDF

contains the MW as a limit of integration. This model uses a five-parameter distribution

with β as the shape parameter, α as the scale parameter, and λ as the accelerating factor.

The model also contains the Beta Distribution, given as

B(t|a, b) =

∫ 1

0
ta−1(1 − t)b−1dt =

Γ(a)Γ(b)
Γ(a + b)

a, b > 0 (2.13)

The PDF and CDF are given as,

f (t|α, β, λ, a, b) =
αtβ−1(β + λt) exp[λt]

B(a.b)

(
1 − exp

[
−αtβ exp [λt]

])a−1
exp

[
−bαtβ exp [λt]

]
3 t, α, β, a, b > 0 λ ≥ 0 (2.14)

and
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F(t|α, β, λ, a, b) =
1

B(a, b)

1−exp
[
λα

(
1−exp

[
( t
α )β

])]∫
0

ωa−1(1 − ω)b−1dω

3 t, α, β, a, b > 0 λ ≥ 0, (2.15)

respectively. In contrast to the standard Weibull, the BMW distribution accommodates

monotone, unimodal and bathtub-shaped hazard functions and therefore can successfully

be utilized in the analysis of survival data. The BMW distribution has seventeen special

case distributions for which many can be tested for goodness of fit by it [22].

2.2.4 New Modified Weibull Distribution.

Almalki and Yuan [23] introduced the New Modified Weibull (NMW) distribution in

2013 with PDF and CDF

f (t|α1, α2, β1, β2, λ) =
(
α1β1tβ1−1 + α2 (β2 + λt) tβ2−1 exp [−λt]

)
exp

[
−α1tβ1 − α2tβ2 exp[λt]

]
3 α1, β1, α2, β2, λ ≥ 0 t ≥ 0 (2.16)

F(t|α1, α2, β1, β2, λ) = 1 − exp
[
−α1tβ1 − α2tβ2 exp[λt]

]
3 α1, β1, α2, β2, λ ≥ 0 t ≥ 0, (2.17)

respectively, by considering a two-component serial arrangement in which one component

follows a standard two-parameter Weibull model and the other follows a MW distribution

[21]. Similar to the BMW model, the NMW model simplifies into several other models;

three of which are the standard Weibull, MW, and additive Weibull. It simplifies to a

standard Weibull when α2 = β2 = λ = 0, an additive Weibull when λ = 0, and MW when

α1 = β1 = 0 [21]. The NMW is increasing when β1, β2 ≥ 1 and decreasing when β1, β2 < 1

and λ = 0. The NMW hazard function will generate a bathtub-curve, when neither the

21



increasing nor decreasing parameters are true [21]. Like the other modified Weibull

distributions, the NMW distribution does not have a closed for solution to 2.18 in deriving

the moments. Almaki and Yuan [23] were able to derive the moments using a

Taylor-Series Expansion as shown in Eq. (2.19)

E
[
tk
]

=

∫ ∞

0
ktk−1 exp

[
α1tβ1 − α2tβ2 exp[[λt]]

]
dt (2.18)

E[tk] =
k
θ

∞∑
n=0

∞∑
m=0

(−α2)n(λn)m

n!m!
α
−(nβ2+m+k)/β1
1 Γ

(
nβ2 + m + k

β2

)
(2.19)

where k ∈ Z+

From here, one could determine the first four raw moments from either equation by setting

k = 1, 2, 3, 4 to determine the mean, variance, skewness, and kurtosis.

2.2.5 Exponentiated Modified Weibull Extension.

The Exponentiated Modified Weibull Extension (EMWE) [24] is a four parameter

distribution with scale parameters, α1, α2 and shape parameters β1, β2 that can be

generalized into several other Weibull distributions, including the MW [21] presented by

Xie et al. This Weibull distribution was introduced by Sarhan and Apaloo [24] in 2013

with PDF and CDF given by Eq. (2.20) and Eq. (2.21), respectively. The EMWE is

increasing when β1, β2 ≥ 1 and forms a bathtub shape when α2 < 1 for any value of β1 or

β1 < 1 for any value of α2.

f (t|α1, α2, β1, β2) = α2β1β2

(
t
α1

)β1−1

exp
( t
α1

)β1

+ α1α2

1 − exp
( t
α1

)β1


×

1 − exp
α1α2

1 − exp
( t
α1

)β1
β2


β2−1

3 α1, α2, β1, β2 > 0 t ≥ 0 (2.20)
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F (t|α1, α2, β1, β2) = 1 − exp
α1α2

1 − exp
( t
α1

)β1
β2

3 α1, α2, β1, β2 > 0 t ≥ 0 (2.21)

Just as the previous methods, there is not a closed form solution for the moments (Eq.

2.22) and numerical methods would be required to determine the raw moments. The

authors use numerical methods with Eq. 2.23 to generate plots for the skewness and

kurtosis by varying the value of β2.

E
[
tk
]

=
λα2β2

α
β1−1
1

∫ ∞

0
tk+α2−1 exp

[
(t/α1)α2 + λα1

(
1 − exp

[
(t/α1)α2

])]
(2.22)

×
[
1 − exp

[
λα1

(
1 − exp

[
(t/α1)α2

])]]β2−1

Eq. 2.22 can be represented in terms of the MW distribution:

E
[
tk
]

=

∞∑
j=0

(−1) jΓ(β2 + 1)
Γ(β2 j)( j + 1)!

∫ ∞

0
tk fMW(t; ( j + 1)α1, α2, β1)dt

By using the moments for the MW distribution, E
[
tk
]

MW
=

∫ ∞
0

tk fMW (t; ( j + 1)α1, α2, β1),

E
[
tk
]

can be written as:

E
[
tk
]

=

∞∑
j=0

(−1) jΓ(β2 + 1)
Γ(β2 j)( j + 1)!

E
[
tk
]

MW
(2.23)

2.2.6 poly-Weibull Distribution.

The poly-Weibull was introduced over twenty years ago by Berger and Sun [25]. The

PDF of the poly-Weibull distribution is expressed as:

f
(
t|α j, β j

)
= exp

− J∑
j=1

(
t
α j

)β j

 J∑

j=1

β jtβ j−1

α
β j

j

 (2.24)

where J ∈ Z+ and α j, β j represent the scale and shape parameters associated with the

Weibull model describing risk j = 1, 2, , J. Accordingly, the poly-Weibull CDF is

expressed as
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F
(
t|α j, β j

)
= 1 − exp

− J∑
j=1

(
t
α j

)β j
 (2.25)

When J = 2, equations (2.24) and (2.25) are the CDF and PDF of the bi-Weibull

distribution, and when J = 3 the model is naturally known as the tri-Weibull distribution.

A value for β j < 1 implies a decreasing hazard rate indicating infant mortality while a

value for β j > 1 infers a wear-out failure mechanism with an increasing hazard rate

function. The poly-Weibull distribution is therefore capable of modeling data with bathtub

shaped hazard functions by fitting multiple failure processes simultaneously. The raw

moments for the poly-Weibull can be determined from Eq. 2.26.

E
[
tk
]

=

∞∫
0

tk exp

− J∑
j=1

(
t
α j

)β j

 J∑

j=1

β jtβ j−1

α
β j

j

 dt (2.26)

2.3 Weibull Comparison

Each of these models has had some varying level of success when modeling the

bathtub-shaped hazard function within their respective publications. Each of the modified

Weibull models utilized the same reference data set with a known bathtub shaped hazard

function from [26] shown in Table 2.2 which will be referred to as the Aarset Data Set

throughout this paper.

Silva et. al showed in [22] that the BMW distribution was a better fit than the MW

[21] and Additive Weibull [19] distributions while Almalki and Yuan showed that NMW

is a better fit than BMW, so it follows that NMW is a better fit than BMW for the Aarset

data set [26]. The Aarset [26] data set in Table 2.2 represents the lifetimes of 50 devices

and contains no censored observations. Similarly, Sarhan & Apaloo [24] showed that

EMWE fit the reference data better than the MW distribution.
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Table 2.2: The Aarset Data Set

0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 52 86 86

In 2013, J.K Freels [27] showed that the poly-Weibull distribution fit the same data

set better than the NMW and EMWE distributions for the bi-Weibull and tri-Weibull.

Some properties for the bi-Weibull and tri-Weibull will be developed from the raw

moments and the poly-Weibull will be compared further with the NMW and EMWE

distributions. The properties for the poly-Weibull will be determined using numerical

methods and with a series expansion. A summary of the PDF’s for these distributions is

shown in Table 2.3.

Table 2.3: PDF for Weibull Distributions

Model PDF

Weibull β

α

(
t
α

)β−1
exp

[
−

(
t
α

)β]
Additive Weibull

(
β1
α1

(α1t)β1−1 +
β2
α2

(α2t)β2−1
)

exp
[
−(α1t)β1 − (α2t)β2

]
Modified Weibull λβ

(
t
α

)β−1
exp

[(
t
α

)β
+ λα

(
1 − exp

[(
t
α

)β])]
Beta Modified Weibull

B(t|a, b) =
∫ 1

0
ta−1(1 − t)b−1dt =

Γ(a)Γ(b)
Γ(a+b)

αtβ−1(β+λt) exp[λt]
B(a.b)

(
1 − exp

[
−αtβ exp [λt]

])a−1
exp

[
−bαtβ exp [λt]

]
New Modified Weibull Distribution

(
α1β1tβ1−1 + α2 (β2 + λt) tβ2−1 exp [−λt]

)
exp

[
−α1tβ1 − α2tβ2 exp[λt]

]
Exponentiated Modified Weibull α2β1β2

(
t
α1

)β1−1
exp

[(
t
α1

)β1
+ α1α2

(
1 − exp

[(
t
α1

)β1
])] [

1 − exp
[
α1α2

(
1 − exp

[(
t
α1

)β1
])]β2

]β2−1

poly-Weibull exp
[
−

J∑
j=1

(
t
α j

)β j

] [
J∑

j=1

β jt
β j−1

α
β j
j

]
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2.4 Closed-Form Derivation of poly-Weibull Moments

It is common practice to determine the moments for a distribution when it is

presented. The literature on the poly-Weibull distribution is limited and to date the

moments have not been derived for the poly-Weibull distribution. Several attempts were

made to solve the integral and are shown below. Each of the derivations below was

motivated by the attempt shown before. Recall, first, that the moments for a distribution

are given by

E
[
tk
]

=

∞∫
0

tk f (t)dt.

In the first derivation the equation will be manipulated into a form of the exponential

family to solve the expected value equation. This manipulation will occur in the PDF

f
(
t|α j, β j

)
= exp

− J∑
j=1

(
t
α j

)β j

 J∑

j=1

β jtβ j−1

α
β j

j


by letting

g (t) = −

J∑
j=1

(
t
α j

)β j

.

taking the derivative of g(t) gives

g′ (t) = −

J∑
j=1

β jtβ j−1

α
β j

j

.

Substituting this expression into the poly-Weibull PDF allows it to be written as:

f
(
t|α j, β j

)
= exp

[
g (t)

] (
−g′ (t)

)
= − exp

[
g (t)

]
g′ (t) = −

d
dt

exp
[
g (t)

]
.

Using this expression for the poly-Weibull PDF allows us to restate the moment equation

as
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E
[
tk
]

=

∞∫
0

tk

(
−

d
dt

exp
[
−g (t)

])
dt.

Let:

u = tk & dv = −
d
dt

exp
[
g (t)

]
dt

Which becomes:

du = ktk−1dt & v = − exp
[
g (t)

]
Plugging into the uv-substitution equation, we get:

{
−tk exp

[
g (t)

]}∞
0

+ k

∞∫
0

tk−1 exp
[
g (t)

]
dt

The left-hand side goes to zero when the limits are evaluated, leaving only the

right-hand-side:

k

∞∫
0

tk−1 exp
[
g (t)

]
dt

Plugging the expression for g(t) back in:

k

∞∫
0

tk−1 exp

− J∑
j=1

(
t
α j

)β j
 dt (2.27)

From here, it can be seen that this integral will not simplify to a form allowing a

closed-form solution. At most, numerical integration could be applied to Eq. 2.27 to

estimate the moments. This resembles what could be a gamma function, but the

summation inside the exponential term presents difficulty employing mathematic

modification by adding 0 to the exponent of tk−1, or raising t to a power of 1. The inability

to manipulate the equation further is due to the β exponent inside the exponential term.
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Any modification to tk outside of the exponential term to obtain a gamma function would

result in changing the integral entirely.

Another attempt at solving E
[
tk
]

will be shown below. In the last method, a

summation outside of the exponential term may have led to the integral being in the form

of a gamma function. In this attempt, the sum outside of the exponential term will not be

removed using uv-substitution. Rather, the tk associated with the expected value equation

will be distributed to the summation outside of the exponential term and the equation will

be modified from that point. To simplify the process, the bi-Weibull is examined by letting

J = 2:

f (t|α1, α2, β1, β2) = exp
− ( t

α1

)β1

+

(
t
α2

)β2
 β1tβ1−1

α
β1
1

+
β2tβ2−1

α
β2
2



E
[
tk
]

=

∞∫
0

tk f (t|α1, α2, β1, β2) dt

=

∞∫
0

tk exp
− ( t

α1

)β1

+

(
t
α2

)β2
 β1tβ1−1

α
β1
1

+
β2tβ2−1

α
β2
2

 dt

First, the tk was distributed to the non-exponential term resulting the right-hand side of the

equation shown below

=

∞∫
0

β1tβ1+k−1

α
β1
1

+
β2tβ2+k−1

α
β2
2

 exp
− ( t

α1

)β1

+

(
t
α2

)β2


Next, the integral will be multiplied by αk−1

αk−1 to set the equation up in a similar form to the

well-known gamma function:

=

∞∫
0

αk−1
1 β1

(
t
α1

)β1+k−1

+ αk−1
2 β2

(
t
α2

)β2+k−1 exp
− ( t

α1

)β1

+

(
t
α2

)β2
 dt
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Distributing
[
αk−1

1 β1

(
t
α1

)β1+k−1
+ αk−1

2 β2

(
t
α2

)β2+k−1
]

to the exponential term renders:

=

∞∫
0

αk−1
1 β1

(
t
α1

)β1+k−1 exp
− ( t

α1

)β1

+

(
t
α2

)β2
 dt

+

∞∫
0

αk−1
2 β2

(
t
α2

)β2+k−1 exp
− ( t

α1

)β1

+

(
t
α2

)β2
 dt

Pulling the constants out of the integrals:

= αk−1
1 β1

∞∫
0

(
t
α1

)β1+k−1

exp
− ( t

α1

)β1

+

(
t
α2

)β2
 dt

+ αk−1
2 β2

∞∫
0

(
t
α2

)β2+k−1

exp
− ( t

α1

)β1

+

(
t
α2

)β2
 dt

Separating the sum within the exponential into products of exponentials using the first law

of exponents (e
∑

ai =
∏

eai):

= αk−1
1 β1

∞∫
0

(
t
α1

)β1+k−1

exp
− (

t
α1

)β1
 exp

− (
t
α2

)β2
 dt

+ αk−1
2 β2

∞∫
0

(
t
α2

)β2+k−1

exp
− (

t
α1

)β1
 exp

− (
t
α2

)β2
 dt

Now, let u =
(

t
α1

)β1
& v =

(
t
α2

)β2
and take the derivative of each.

du =
β1tβ1−1

α
β1
1

dt =
β1

t

(
t
α1

)β1

dt =
β1u

t
dt → dt =

t
β1u

du

dv =
β2tβ2−1

α
β2
2

dt =
β2

t

(
t
α2

)β2

dt =
β2v

t
dt → dt =

t
β2v

dv

Now, dt is a first order differential equation for both u & v with t still in the expression.

However, t can be determined from u & v as t = α1u1/β1 & t = α2v1/β2 , respectively. From
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this, dt can be determined for u and v as α1u1/β1−1

β1
du & α2v1/β2−1

β2
dv, respectively. Now, u, v, &

each respective dt can be plugged into the integral for E
[
tk
]
. Like-terms are then

combined and constants are pulled outside of the integral.

= αk−1
1 β1

∞∫
0

u(k−1)/β1 exp [−u] exp [−v]
(
α1u1/β1−1

β1
du

)
+ αk−1

2 β2

∞∫
0

v(k−1)/β2 exp [−u] exp [−v]
(
α2v1/β2−1

β2
dv

)

= αk−1
1 β1

(
α1

β1

) ∞∫
0

u(k−1)/β1+1/β1−1 exp [−u] exp [−v] du + αk−1
2 β2

(
α2

β2

) ∞∫
0

v(k−1)/β2+1/β2−1 exp [−u] exp [−v] dv

= αk
1

∞∫
0

uk/β1−1 exp [−u] exp [−v] du + αk
2

∞∫
0

vk/β2−1 exp [−u] exp [−v] dv

The gamma function is in the form Γ (k) =
∞∫
0

tk−1 exp [−t] dt, which could not be

obtained as a closed-form solution because of the two exponential terms. The u & v terms

could be solved with respect to one another by relating t or dt but this still does not lead to

a closed form solution unless β1 = β2; which is simply the two-parameter Weibull. To

further determine if it could become a gamma function, the attempt was made to

reverse-engineer the poly-Weibull distribution starting with the gamma function. If

successful, it would meet in the middle and a closed-form solution would be obtained.

The two-parameter Weibull uses u-substitution when developing an equation to find

the moments. This process will begin with an integral to the point where a u-substitution

as been performed.

Γ(β) =

∞∫
0

uβ−1 exp [−u] du

where u =

( t
α

)β
Then, take the derivative of u and put the integral in terms of t:

du = β
( t
α

)β−1
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The integral becomes:

Γ (β) =

∞∫
0

( t
α

)β(β−1)
exp

[
−

( t
α

)β] (
β
( t
α

)β−1
)

dt

= β

∞∫
0

tβ
2−βtβ−1

αβ2−βαβ−1
exp

[
−

( t
α

)β]
dt

= β

∞∫
0

tβ
2−1

αβ2−1

= β

∞∫
0

( t
α

)β2−1
exp

[
−

( t
α

)β]
dt

Sum J gamma functions:

Γ(β1) +Γ(β2) + . . . +Γ(βJ)

= β1

∞∫
0

(
t
α1

)β2
1−1

exp
− (

t
α1

)β1
 dt

+ β2

∞∫
0

(
t
α2

)β2
2−1

exp
− (

t
α2

)β2
 dt

+ . . . + βJ

∞∫
0

(
t
αJ

)β2
J−1

exp
− (

t
αJ

)βJ
 dt

This becomes:
J∑

j=1

Γ
(
β j

)
=

J∑
j=1

β j

∞∫
0

(
t
α j

)β2
j−1

exp
− (

t
α j

)β j
 dt

J∑
j=1

Γ
(
β j + k

)
=

J∑
j=1

β j

∞∫
0

(
t
α j

)β2
j +k−1

exp
− (

t
α j

)β j
 dt

Again, the same conclusion is reached because of the summation inside the integral

(in addition to the β2
j term attached to t). A product of integrals would need to be created

inside the integral which eliminates the equality. The raw moments can also be

determined using numerical methods with Eq. 2.27, in the form:

E
[
tk
]

= k

∞∫
0

tk−1 exp

− J∑
j=1

(
t
α j

)β j
 dt (2.28)
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From here, it can be concluded that a closed-form solution could not be obtained

using traditional methods of manipulating the equation into a form of the exponential

family, distributing tk and algebraically modifying the contents of the integral, or

reverse-engineering the poly-Weibull starting from the gamma function. Power series are

often used in situations such as these to reach a closed-form solution to to an integral. The

poly-Weibull contains a summation inside of the exponential term which leads to many of

the methods mentioned failing. The power series related to exponential terms is the

Taylor-Series expansion, therefore this method should be performed to determine an

equation for the moments.
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III. Methodology

Finding an expression for the moments of a distribution allows one to generate the

mean, variance, skewness, and kurtosis for that given distribution. An expression for the

kth moment may be found by evaluating the equation below for the appropriate value of k.

E
[
tk
]

=

∞∫
0

tk f (t) dt (3.1)

where k ∈ Z+

Evaluating this integral for k = 1, 2, 3, 4, gives the first four moments which lead to

common properties for a given distribution. Determining an equation for the moments of

the poly-Weibull distribution is left to a Taylor-Series approximation since a closed form

solution was not possible using the methods shown in section 2.4. The first part of this

derivation utilizes the same uv-substitution method shown in during the attempt at finding

a closed-form solution in Chapter 2. Recall, the PDF of the poly-Weibull distribution is

expressed as:

f
(
t|α j, β j

)
= exp

− J∑
j=1

(
t
α j

)β j

 J∑

j=1

β jtβ j−1

α
β j

j

 .
Substituting this PDF into the moment equation (Eq. 3.1) results in the following integral

to be evaluated

E
[
tk
]

=

∞∫
0

tk f
(
t|α j, β j

)
dt =

∞∫
0

tk exp

− J∑
j=1

(
t
α j

)β j

 J∑

j=1

β jtβ j−1

α
β j

j

 dt.

The lower bound of this moment equation is 0 since the poly-Weibull is defined overthe

support region [0,∞). The derivation for the moments, using the Taylor-series

approximation, will be shown for the bi-Weibull distribution, the tri-Weibull distribution
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equation is given at the end with the derivation show in Appendix A.4. We start with

setting up the bi-Weibull distributions by setting J = 2:

f (t|α1, α2, β1, β2) = exp
−( t

α1

)β1

−

(
t
α2

)β2
 β1tβ1−1

α
β1
1

+
β2tβ2−1

α
β2
2


3.1 Derivation of bi-Weibull Moments

Setting up the moment equation:

E
[
tk
]

=

∞∫
0

tk f (t|α1, α2, β1, β2) dt

=

∞∫
0

tk exp
−( t

α1

)β1

−

(
t
α2

)β2
 β1tβ1−1

α
β1
1

+
β2tβ2−1

α
β2
2

 dt

Since it is known that the PDF is the derivative of the CDF (Eq. 1.4), the PDF

f (t|α1, α2, β1, β2) can be rewitten as the negative derivative of the exponential term:

exp
−( t

α1

)β1

−

(
t
α2

)β2
 β1tβ1−1

α
β1
1

+
β2tβ2−1

α
β2
2

 = −
d
dt

exp
−( t

α1

)β1

−

(
t
α2

)β2


This allows the integral to be simplified as

→

∞∫
0

tk

− d
dt

exp
−( t

α1

)β1

−

(
t
α2

)β2
 dt.

Next, terms are assigned to u and dv and the derivative of u and anti-derivative of dv are

determined. These values are

u = tk dv = −
d
dt

exp
−( t

α1

)β1

−

(
t
α2

)β2
 dt

du = ktk−1dt v = − exp
−( t

α1

)β1

−

(
t
α2

)β2
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substituting these values into uv −
∫

vdu gives the following expression

=

−tk exp
−( t

α1

)β1

−

(
t
α2

)β2

∞

0

+

∞∫
0

ktk−1 exp
−( t

α1

)β1

−

(
t
α2

)β2
 dt.

As was shown in Section 2.4, the left-hand-side of this equation goes to 0 and only the

right-hand-side remains to be solved

= k

∞∫
0

tk−1 exp
−( t

α1

)β1

−

(
t
α2

)β2
 dt.

Since it is known that e
∑

ai =
∏

eai , the exponents may broken up as follows

= k

∞∫
0

tk−1 exp
−( t

α1

)β1
 exp

−( t
α2

)β2
 dt.

The Taylor-series expansion is now applied to the second exponential term, as the first

exponential term is retained to eventually build towards a gamma function as is done to

determine the moments of the two-parameter Weibull distribution

= k

∞∫
0

tk−1 exp
−( t

α1

)β1
 ∞∑

n=0

(
−
(

t
α2

)β2
)n

n!
dt.

The next steps involve algebraic manipulation of the equation to obtain a form that

resembles the gamma function, Γ (β) =
∞∫
0

tβ−1 exp [−t] dt

= k

∞∫
0

tk−1 exp
−( t

α1

)β1
 ∞∑

n=0

(
− tβ2

α
β2
2

)n

n!
dt. (3.2)

The summation and terms not attached to the time variable t are now pulled out of the

integral using termwise integration (Eq. A.5 in Appendix A.1) followed by combining the

t terms. Series expansion is known to be absolutely convergent [28], but termwise

integration requires that the function inside the sum must be uniformly convergent.
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3.1.1 Uniform Convergence Proof.

The integral shown in Eq. 3.2 goes to infinity while the definition for termwise

integration is over some compact region. However, it is known that ∃T > t in many

situations, therefore the integral is not always infinite and termwise integration can be

applied. Recall first that the integral being evaluated is given in Eq. A.1:

E
(
tk
)

=

∞∫
0

tk f (t)dt

Using Eqs: 1.1, 1.2, & 1.4:

f (t) =
d
dt

F(t)

F(t) = 1 − R(t)

→ f (t) =
d
dt

(1 − R(t)) = −
d
dt

R(t)

→ −

∞∫
0

tk d
dt

R(t)dt

R(t) = Pr(T > t) 3 T ≥ 0

∴ ∃T > t

There are cases, such as right-censored data, where the t would have to be assumed to

be infinite. Therefore, this may not always be true. However, since we never carry test out

to infinity we can assume this to be true.

A series with sum s(z) is called uniformly convergent in a region G if ∀ ε > 0 we can

find a N = N(ε), not depending on z 3 |sn(z) − s(z)| < ε ∀n > N and ∀z ∈ G [28]. Here, t,

m, and M will be used in place of z, n, and N, respectively. Suppose t ∈ G and ∃ ε > 0.

Also, suppose ∃(a, b) ∈ G ∈ R+ where M = max{|a|, |b|}. Per the definition, s(t) is defined

as:

s(t) =

∞∑
n=0

(
− tβ2

α
β2
2

)n

n!
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The mth term is given by:

sm(t) =

m∑
n=0

(
− tβ2

α
β2
2

)n

n!

Therefore:

|sm(t) − s(t)| =

∣∣∣∣∣∣∣∣∣∣
m∑

n=0

(
− tβ2

α
β2
2

)n

n!
−

∞∑
n=0

(
− tβ2

α
β2
2

)n

n!

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣−
∞∑

n=m+1

(
− tβ2

α
β2
2

)n

n!

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∞∑

n=m+1

(
− tβ2

α
β2
2

)n

n!

∣∣∣∣∣∣∣∣∣∣
If ∃M ∈ G ∈ R+ 3 m > M and

∣∣∣∣∣(− tβ2

α
β2
2

)∣∣∣∣∣ < M, then:

|sm(t) − s(t)| =

∣∣∣∣∣∣∣∣∣∣
∞∑

n=m+1

(
− tβ2

α
β2
2

)n

n!

∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∞∑

n=m+1

Mn

n!

∣∣∣∣∣∣∣
As m→ ∞, n→ ∞ as well, and

∞∑
n=m+1

Mn

n!
→ 0

∴ |sm(t) − s(t)| =

∣∣∣∣∣∣∣∣∣∣
m∑

n=0

(
− tβ2

α
β2
2

)n

n!
−

∞∑
n=0

(
− tβ2

α
β2
2

)n

n!

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
∞∑

n=m+1

(
− tβ2

α
β2
2

)n

n!

∣∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∞∑

n=m+1

Mn

n!

∣∣∣∣∣∣∣ = 0 < ε �

37



This proof is for a closed region, G, and the integral in which termwise integration is

being applied to, is infinite. There may exists situations where this would not hold as true

and the derived equation cannot be used. It has been shown that the series is uniformly

convergent over some closed region and uniform convergence will be assumed to be true

for this derivation. The above proof will serve as a basis for stating this as a proposition

for the infinite integral. Therefore, termwise integration will be applied and the integral

shall be moved within the summation resulting in the following expression:

E
[
tk
]

= k
∞∑

n=0

1(
−α

β2
2

)n
n!

∞∫
0

tk−1 exp
−( t

α1

)β1
 tnβ2dt.

Rearranging terms involving t then gives the following expression

E
[
tk
]

= k
∞∑

n=0

1(
−α

β2
2

)n
n!

∞∫
0

tk+nβ2−1 exp
−( t

α1

)β1
 dt

Next, define the substitution of the term inside of the exponent u =
(

t
α1

)β1
and take the

derivative to obtain du

du =
β1tβ1−1

α
β1
1

dt =
β1tβ1

α
β1
1 t

dt.

Using this expression, we solve for dt and plug the result into the integral along with u.

The t−1 cancels with the t in tk+nβ2−1. This gives the following result

dt =
α
β1
1 t

β1tβ1
du =

t
β1

αβ1
1

tβ1

 du =
t
β1

(
α1

t

)β1

du =
t

uβ1
du

→ = k
∞∑

n=0

1(
−α

β2
2

)n
n!

∞∫
0

tk+nβ2−1 exp [−u]
(

t
uβ1

du
)

=
k
β1

∞∑
n=0

1(
−α

β2
2

)n
n!

∞∫
0

tk+nβ2 exp [−u] u−1du.
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Rearranging u =
(

t
α1

)β1
, renders the following expression

→ α1u1/β1 = t

which is plugged into the integral for t. The α1 term is pulled out of the integral and u−1 is

combined with u(k+nβ2)/β1 giving

=
k
β1

∞∑
n=0

1(
−α

β2
2

)n
n!

∞∫
0

(
α1u1/β1

)k+nβ2
exp [−u] u−1du

=
k
β1

∞∑
n=0

α
k+nβ2
1(

−α
β2
2

)n
n!

∞∫
0

u(k+nβ2)/β1 exp [−u] u−1du

=
k
β1

∞∑
n=0

α
k+nβ2
1(

−α
β2
2

)n
n!

∞∫
0

u
k+nβ2
β1
−1 exp [−u] du

which results in an integral expression in the form of the gamma function for u

=
k
β1

∞∑
n=0

α
k+nβ2
1(

−α
β2
2

)n
n!

Γ

(
k + nβ2

β1

)
. (3.3)

The derivation is complete and Eq. 3.3 is the expected value equation for the

bi-Weibull distribution. At this point, this equation can be used to determine the raw

moments which results in statistical properties such as the mean, variance, skewness, and

kurtosis.

For the tri-Weibull (J = 3), the process is the same with the β1 term still left inside

the integral and Taylor-Series expansion applied to the exponential term containing β3 in

addition to the exponential term containing β2. Both sums are pulled outside of the

integral just as the authors did in [23] to obtain an expected value equation for the NMW

distribution. Once the sums are pulled outside the integral, the remaining steps in turning

the integral into a gamma function are identical. The tri-Weibull derivation is shown in

Appendix A.4 resulting in Eq. 3.4.
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=
k
β1

∞∑
n1=0

∞∑
n2=0

α
k+n1β2+n2β3
1(

−α
β2
2

)n1
(
−α

β3
3

)n2
n1!n2!

Γ

(
k + n1β2 + n2β3

β1

)
(3.4)

The expected value equations shown in Eq. 3.3 & Eq. 3.4 reveals an expected pattern

for the poly-Weibull; the number of infinite-summations and distributed β and n terms is

j − 1. The product of sums can then be represented as
∏∑

starting with j = 2 for the

product operator and n j−1 = 0 for the summation operator. The gamma function contains

another infinite sum starting from j = 2 where n j−1 is multiplied by β j. Although J.K.

Freels [27] has shown that the bi-Weibull and tri-Weibull are as far as one needs to go, if

someone was to find it necessary to examine a quad-Weibull distribution they would easily

be able to determine the moment estimation using Eq. 3.5 shown below.

EJ

[
tk
]

=
αk

1k
β1

 J∏
j=2

∞∑
n j−1=0

α
n j−1β j

1(
−α

β j

j

)n j−1
n j−1!

 ×Γ

k +
∑J

j n j−1β j

β1

 (3.5)

where J, k ∈ Z+
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IV. Results

The moment equations derived in the previous chapter are used here to determine

several summary measures, namely the mean, variance, skewness, and kurtosis for the

bi-Weibull and tri-Weibull distributions. These summary measures are functions of one or

more of the first four raw moments, which can be computed by setting k = 1, 2, 3, 4 in

Equations 3.3 and 3.4. The expressions for these raw moments are shown in Table 4.1.

Table 4.1: First 4 raw moments for bi-Weibull & tri-Weibull

k bi-Weibull E2

[
tk
]

tri-Weibull E3

[
tk
]

1 α1
β1

∞∑
n=0

α
nβ2
1(

−α
β2
2

)n
n!

Γ
(

1+nβ2
β1

)
α1
β1

∞∑
n1=0

∞∑
n2=0

α
n1β2+n2β3
1(

−α
β2
2

)n1
(
−α

β3
3

)n2
n1!n2!

Γ
(

1+n1β2+n2β3
β1

)
2 2α2

1
β1

∞∑
n=0

α
nβ2
1(

−α
β2
2

)n
n!

Γ
(

2+nβ2
β1

) 2α2
1

β1

∞∑
n1=0

∞∑
n2=0

α
n1β2+n2β3
1(

−α
β2
2

)n1
(
−α

β3
3

)n2
n1!n2!

Γ
(

2+n1β2+n2β3
β1

)
3 3α3

1
β1

∞∑
n=0

α
nβ2
1(

−α
β2
2

)n
n!

Γ
(

3+nβ2
β1

) 3α3
1

β1

∞∑
n1=0

∞∑
n2=0

α
n1β2+n2β3
1(

−α
β2
2

)n1
(
−α

β3
3

)n2
n1!n2!

Γ
(

3+n1β2+n2β3
β1

)
4 4α4

1
β1

∞∑
n=0

α
nβ2
1(

−α
β2
2

)n
n!

Γ
(

4+nβ2
β1

) 4α4
1

β1

∞∑
n1=0

∞∑
n2=0

α
n1β2+n2β3
1(

−α
β2
2

)n1
(
−α

β3
3

)n2
n1!n2!

Γ
(

4+n1β2+n2β3
β1

)

For a random variable T the mean is the first raw moment of the expected value of a

distribution and is often denoted as

µ = E[T ].

The variance Var(T ) is the second central moment for random variable T . Variance is

often denoted by σ2 and is a function of the first and second raw moments where
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Var[T ] = σ2 = E[T 2] − (E[T ])2 .

Skewness is the third standardized moment of the random variable T . The skewness

value is a measure of the asymmetry of the distribution about its mean and can be positive,

negative, or undefined. Skewness can be determined by dividing the third centralized

moment by σ3 and is expressed as

S k[T ] =
E[T 3] − 3µ Var[T ] − µ3

σ3 .

Finally, the kurtosis is the fourth standardized moment of the random variable T . The

kurtosis value is a measure of the ”tailedness” of the distribution and can be determined

by dividing the fourth central moments by σ4. Kurtosis is often denoted by the symbol κ

and is expressed as

κ[T ] =
E[T 4] − 4µE[T 3] + 6µ2E[T 2] − 3µ4

σ4 .

These four statistical properties are shown in more detail with respect to the raw and

centralized moments in Appendix A.3. Identifiability is important for the use of Eq. 3.5,

meaning different values of the parameters will generate different probability distributions

of the observable variables. By definition, this means that if we let P = {Pθ|θ ∈ Θ} be a

statistical model where the parameter space Θ is either finite- or infinite-dimensional; P is

identifiable if the mapping θ 7→ Pθ is one-to-one, ie: Pθm = Pθn ⇐⇒ θm = θn. It should be

noted that for both the bi-Weibull and tri-Weibull that the identification conditions are

such that the β < 1 value cannot be β1. For simplification, the additional requirement that

β1 > β2 > β3 will be implemented.
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4.1 Statistical Properties of poly-Weibull moments

The Aarset [26] dataset shown in Table 2.2 has a known bathtub shaped hazard

function. This dataset has often been used to compare the performance of various

distributions that have been developed for modeling data known to produce a bathtub

shaped hazard function. Keeping with the trend of utilizing this data set to examine

modified Weibull distributions, the α j & β j parameters are determined from this data set

and will be used to test the statistical properties derived from Eq. 3.5. Solving a system of

non-linear equations from the log-likelihood function cannot be accomplished analytically

and Newtonian or quasi-Newtonian numerical optimization techniques can be tedious as

finding a solution is highly sensitive on the starting values for the parameters in each

equation. It would be simpler to obtain accurate parameter estimates by maximizing the

log-likelihood function directly using a quasi-Newtonian algorithm. However, for

asymptotic interval estimation, the optimization algorithm can produce inaccurate Hessian

matrices leading to negative values along the diagonal of the covariance matrix. Thus, for

finding the standard errors of the poly-Weibull model parameters the components of the

observed Fisher information matrix have been derived analytically by J.K. Freels [27].

Using this method led to the the α j & β j parameter values for the bi-Weibull and

tri-Weibull distributions shown in Table 4.2.

Table 4.2: bi-Weibull & tri-Weibull MLE’s for the Aarset Data Set

bi-Weibull: α1 = 84.907 α2 = 61.663 β1 = 82.334 β2 = 0.702

tri-Weibull: α1 = 85.091 α2 = 92.299 α3 = 122.478 β1 = 98.152 β2 = 4.215 β2 = 0.524
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From here, the mean, variance, standard deviation, skewness, and kurtosis can be

determined for the bi-Weibull and tri-Weibull. The summations will be carried out to a

level of tolerance of 1 × 10−4. The tolerance was varied from 1 × 10−4 to 1 × 10−1. At

1 × 10−1, the number of iterations of the sum was only reduced by 5; the mean value was

only different by 0.0015. Each of the remaining statistical properties were not

significantly changed, either. At certain levels of tolerance, the higher moments would

reach the tolerance in 1 less iteration. For this data set, the computational cost for each

tolerance was minimal and the number of iterations for each moment was the same at a

tolerance of 1 × 10−4, therefore that level of tolerance was selected. These calculations

were completed using the α & β values shown in Table 4.2 for bi-Weibull & tri-Weibull.

These values were obtained from the Aarset [26] data set (Table 2.2).

4.1.1 Mean & Standard Deviation.

(a) bi-Weibull Mean & Standard Deviation (b) tri-Weibull Mean & Standard Deviation Outer

Sum

Figure 4.1: Convergence of bi-Weibull & tri-Weibull Mean & Standard Deviation

Using the code shown in Appendices B.1.1 & B.1.2 with the ML parameter estimates

listed in Table 4.2, the bi-Weibull & tri-Weibull mean and standard deviation were
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determined. Figure 4.1a shows the mean and standard deviation converge to an acceptable

value after only 11 iterations for the bi-Weibull. Figure 4.1b shows the outer sum for the

mean and standard deviation. The mean converges after 9 iterations while the standard

deviation converges after only 8 iterations. The figures show little movement after the

interations 4 and 5 because the tolerance level changes are on the order of 10−4.

(a) Mean (b) Standard Deviation

Figure 4.2: Convergence of tri-Weibull Mean & Standard Deviation Inner Sum

The tri-Weibull moment equation consists of 2 summation terms. The first

summation term (inner sum) for the mean and standard deviation is shown in Figure 4.2.

The two outermost lines with respect to the y-axis (n1 = 0 and n1 = 1) are the first two

runs of the inner sum and show that the mean and standard deviation begin to converge by

n1 = 2. The values begin to converge as the lines get closer to one another and each line

begins to require less iterations to reach the specified tolerance by n2 = 3. The final churn

of the inner sum for the mean (n1 = 8) only runs for two iterations while the variance

(n1 = 7) only runs for three iterations.
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4.1.2 Variance.

(a) bi-Weibull Variance (b) tri-Weibull Variance Outer Sum

Figure 4.3: Convergence of bi-Weibull & tri-Weibull Outer Variance

Figure 4.3 shows the convergence of variance for the bi-Weibull and tri-Weibull

distributions. The standard deviation shown above resulted from the variance values

obtained so the activity is similar. For the bi-Weibull distribution, the variance converged

after 11 iterations while the tri-Weibull outer sum converged in 8 iterations. Both plots in

Figure 4.3 show less activity after n = 5 based on the dimensions of the plot which was

close to the cutoff when the tolerance was examined at 10−1. The inner sum of the variance

for the tri-Weibull is shown in Figure 4.4. The activity is the same as that of the standard

deviation; by n1 = 2 the lines move closer together and by n1 = 3 the lines become shorter.
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Figure 4.4: tri-Weibull Variance Inner Sum

4.1.3 Skewness.

Skewness is a measure of the symmetry of the shape of a distribution. A positive

skewness value indicates that the distribution is positively skewed or right-tailed.

Alternatively a negative skewness value indicates that the distribution is negatively skewed

or left-tailed. A skewness value of zero indicates that the distribution is symmetric.

(a) Standard Plot (b) Zoomed In

Figure 4.5: Convergence of bi-Weibull Skewness
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Figure 4.5a shows very little change in the skewness value after 2 iterations.

However, zooming in on the elbow of this curve, as shown in Figure 4.5b, reveals that the

activity begins to slow even at the micro level after 7 iterations.

(a) Inner Sum (b) Outer Sum

Figure 4.6: Convergence of tri-Weibull Inner & Outer Sum Skewness

The inner sum for the tri-Weibull skewness (Figure 4.6a) shows little activity after

n2 = 4. The two outermost lines are the first two runs when n1 = 1, 2; once n1 > 1 the lines

begin to converge on themselves. Just as with the variance, the lines get shorter when

n2 > 2; when n2 = 7, the inner sum only churns through 3 iterations. Figure 4.6b shows

the outer sum for the skewness. It can be seen that the skewness converges to a value after

n1 = 4 at a tolerance of 1 × 10−2; the remaining 4 iterations are changes to the

ten-thousandths place.

4.1.4 Kurtosis.

Kurtosis measures the distributions flatness or peakedness. A distribution is referred

to as platykurtic, or leptokurtic if it appears flat or peaked, respectively.
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(a) Standard Plot (b) Zoomed In

Figure 4.7: Convergence of bi-Weibull Kurtosis

Kurtosis showed similar behavior as skewness for the bi-Weibull seeming like it

converges after only three iterations (Figure 4.7a). When zoomed in further in Figure

4.7b, the changes are minimal after 6 iterations. However, these changes are only shown at

to the 10−1 level in the zoomed plot. The inner sum for the kurtosis shown in Figure 4.7b

shows similar activity to the skewness.

(a) Inner Sum (b) Outer Sum

Figure 4.8: Convergence of tri-Weibull Inner & Outer Sum Kurtosis
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Figure 4.8 shows the inner and outer sum for the kurtosis of the tri-Weibull. The

activity shown in Figure 4.8a resembles the same behavior as each of the other tri-Weibull

statistical properties for the inner sum. The final churn (n1 = 7) of the inner sum for the

kurtosis runs for only 3 iterations. The changes were minimal on the 10−1 scale shown in

the plots after n1 = 3 for the kurtosis.

4.1.5 Obtained Values.

Table 4.3 shows the values for the mean, variance, standard deviation, skewness, and

kurtosis obtained for the bi-Weibull and tri-Weibull using Eqs. 3.3 & 3.4, respectively.

Table 4.3: tri-Weibull Mean, Variance, & Standard Deviation

bi-Weibull tri-Weibull

µ 42.8995 45.9151

σ 32.8929 32.4370

Var[T] 1081.9429 1052.1619

S k[T ] 0.1368 −0.1246

κ[T ] 1.3739 1.4095

The values for the bi-Weibull and tri-Weibull are mostly similar. The tri-Weibull has

a higher mean but lower variance; leading to a slightly smaller standard deviation. Based

on the values obtained, the kurtosis indicates the the bi-Weibull and tri-Weibull are both

platykurtic with values less than three. The skewness for the bi-Weibull and tri-Weibull

are interesting because the bi-Weibull shows a positive value while the tri-Weibull shows a

negative value indicating they are skewed in opposite directions. However, the values are

both close so the skewness isn’t too far off despite the opposite signs. The PDF’s are
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shown in Figure 4.9 and do not indicate any significant difference in skewness as the close

skewness values suggest.

Figure 4.9: bi-Weibull & tri-Weibull PDF

The equations were both derived using the same methods and can be obtained from

Eq. 2.28 for the general poly-Weibull. Comparing them to one another may render bias

results. These results will need to be compared to other modified Weibull methods to

better determine if the statistical properties are reasonable.

4.2 Computational Testing

The property values obtained for the bi-Weibull and tri-Weibull using the

Taylor-series expansion equation derived will need to be examined further by comparing

them to property values obtained for the Aarset data set for the EMWE (Eq. 2.22) &

NMW (Eq. 2.18) as well as well as the bi-Weibull and tri-Weibull (Eq. 2.28) via

numerical integration.
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Table 4.4: Performance Measures for the Aarset Data Set

Model Parameters Log-Lik K-S p-value AIC

bi-Weibull 4 −206.09 0.100 0.925 420.20

tri-Weibull 6 −202.51 0.063 0.998 417.01

NMW 5 −212.90 0.088 0.803 435.80

EMWE 4 −213.86 0.101 0.646 435.72

Table 4.4 displays a comparison of each models goodness of fit measures that were

determined in [27]. This indicates that the null hypothesis of the two sample

Kolmogorov-Smirnov Test (K-S) test cannot be rejected for any of the four models at a

significance level below 0.8. However, the data also shows that the tri-Weibull and

bi-Weibull fit the data better than either the NMW or the EMWE as both have larger

likelihoods as well as smaller K-S statistics and Akaike Information Criterion (AIC)

values. An interesting observation is that the tri-Weibull has the lowest AIC value despite

having the most parameters. The model with the lowest AIC value is said to be the best fit

but AIC is known to penalize models with higher parameters to prevent over-fitting.

Despite the penalty obtained from the parameters, the tri-Weibull was still shown to be a

better fit for the Aarset [26] data set.
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(a) Reliability function - Kaplan-Meier estimate (b) PDF against Histogram

(c) Hazard Functions & Empirical Hazard His-

togram

Figure 4.10: Comparing model fit for the Aarset data

Figure 4.10a shows the reliability function of each model plotted against the

Kaplan-Meier estimate of the data. The NMW and EMWE are observed to fit the middle

portion of the data better than the bi-Weibull. However, the lower and upper tails of the

data show a better fit for both the bi-Weibull and tri-Weibull where the majority of

observations are concentrated. The tri-Weibull is shown to be the best fit across the range

of the observations. Figure 4.10b & 4.10c show the PDF plotted against a histogram of the

data & the hazard functions plotted against the empirical hazard plot, respectively. In

these two plots, it is evident that the the poly-Weibull models indicate that the probability

of failure after the final observation is near zero, which is to be expected for a system with

a true bathtubshaped hazard function, while the NMW and EMWE do not reflect this.
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Table 4.5: MLE’s for the Aarset Data Set

Model
MLE of the Parameters

α1 α2 α3 β1 β2 β3 λ

bi-Weibull 84.907 61.663 82.334 0.702

tri-Weibull 85.091 92.299 122.478 98.152 4.215 0.524

NMW 0.071 7.015 × 10−8 0.016 0.595 0.197

EMWE 49.050 7.18 × 10−5 3.148 0.145

The MLE’s for the Aarset Data Set are shown in Table 4.5 were determined in [27].

These values will be used with each respective equation to to determine their first four raw

moments. The raw moments will then be used to determine the mean, variance, standard

deviation, skewness, and kurtosis to be compared.

Table 4.6: Modified Weibull Raw Moment Values

Numerical Integration Taylor-Series Approximation

Raw Moment EMWE NMW bi-Weibull tri-Weibull bi-Weibull tri-Weibull

E [T ]
46.06922 45.15665 42.89954 45.79697 42.8995 45.9151

(< 0.00061) (< 0.00018) (< 0.00075) (< 0.0023)

E
[
T 2

] 3060.489 3123.966 2922.313 3144.316 2922.313 3160.356

(< 0.0092) (< 0.013) (< 0.061) (< 0.022)

E
[
T 3

] 221256.3 236630.4 223063.9 235784.7 223063.9 237477.3

(< 0.89) (< 1.1) (< 5) (< 1.9)

E
[
T 4

] 16656166 18570582 17777704 18370227 17777708 18533155

(< 95) (< 90) (< 425) (< 171)
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The values obtained using Eq. 3.5 are close to those calculated using numerical

integration as shown in Table 4.6. Each raw moment for the bi-Weibull is almost an exact

match between the two methods. The tri-Weibull shows an increasing difference between

the numerically integrated value and the value from 3.5. The error associated with the

bi-Weibull numerically integrated value is significantly high compared to the other

methods.

Table 4.7: Modified Weibull Properties

Numerical Integration Taylor-Series Approximation

Property EMWE NMW bi-Weibull tri-Weibull bi-Weibull tri-Weibull

µ 46.06922 45.15665 42.89954 45.79697 42.89953 45.91508

σ 30.62868 32.93695 32.89289 32.35666 32.89289 32.43704

Var[T ] 938.116 1084.843 1081.942 1046.954 1081.943 1052.162

S k[T ] −0.2148933 −0.06753683 0.1367966 −0.1213264 0.1367971 −0.1245532

κ[T ] 1.526415 1.338853 1.373903 1.413325 1.373899 1.4095353

The statistical properties shown in Table 4.7 for each of the methods appear to all be

very close. Each method renders similar values for the mean with the EMWE being the

largest and bi-Weibull being the smallest (for both numerically integrated and using Eq.

3.5). The variance for each were close which lead to standard deviation values that are

almost all the same to the nearest whole number; the only one with a dissimilar whole

number is also the smallest (EMWE).
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Figure 4.11: bi-Weibull, tri-Weibull, EMWE, & NMW PDF

It was observed in the last section that the skewness for the bi-Weibull and

tri-Weibull are skewed in different directions; the bi-Weibull remains the only value with a

positive skew for both the numerically integrated solution and the values obtained from

Eq. 3.5. All of the values are close which suggests that the skewness is not too great

(Figure 4.11) and each model is relatively symmetric, with NMW being the most

symmetric and EMWE being skewed the most. The kurtosis for each method are very

similar and indicates that each is platykurtic.
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V. Conclusion & Future Work

5.1 Conclusion

The warfighting domain is changing and defense systems will continue to grow in

complexity, which suggests that the number of embedded potential failure modes will also

increase. In an effort to maintain its standing as the dominant military leader and protect

the nations interests, the United States will need to ensure that all defense systems are

reliable and fully functional to complete the mission, despite the increasing complexity

and challenges that lie ahead.

Although a closed-form solution to the poly-Weibull moments was not possible using

the methods shown in section 2.4, the Taylor-Series approximation produces logical values

that can be used to estimate time for repairs, replacements, and scheduled maintenance.

The derived equation can be tested against more data-sets to solidify the claim of validity.

Eq. 3.5 is flexible with higher orders of poly-Weibull than the bi-Weibull and tri-Weibull

should someone want to go higher than a tri-Weibull. The mathematical methods applied

to obtain Eq. 3.5 are outlined such that they can easily understood so other may use them

in deriving an estimated equation for the moments for any future developments.

It was determined in [27] that the poly-Weibull was a better fit for the Aarset data set

that both the NMW and EMWE based on the values shown in Table 4.4. Since the

statistical properties in Table 4.7 show little variation between them and the poly-Weibull

has been shown to be a better fit to the data, it suffices to say that the properties obtained

from Eq. 3.5 are acceptable.

5.2 Future Work

Many of the methods in this paper were tested against the Aarset data set (author?)

[26]. This data set has a known bathtub-shaped hazard function that has been utilized in
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many research papers when comparing modified Weibull distributions. Further research

into more data sets with known bathtub-shaped hazard functions would provide a stronger

argument for any of the modified-Weibull methods mentioned.

As stated in the introduction, these failures compete with each other. Some failures

never occur in test because of other dominant failure modes. The method of moments will

lead to an estimation of the population mean whereas testing results in a sample mean.

Because of this, a mean can only be somewhat informative. For testing, a median may be

a more useful statistic to obtain. Determining a median for the poly-Weibull would not be

an easy tasks but would be value-added.

The end product of this research and the research by J.K Freels in [27] is to develop

an package in RTM that will compare goodness-of-fit and determine the statistical

properties.
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Appendix A: Math Tools & Extra Derivations

A.1 Math Tools Applied

Expected Value Equation: E
[
tk
]

=

∞∫
0

tk f (t)dt (A.1)

First Law of Exponents: e
∑

ai =
∏

eai (A.2)

Gamma Function: Γ (k) =

∞∫
0

t−k exp [−t] dt (A.3)

UV Substitution: uv −
∫

vdu (A.4)

Termwise Integration:
∫ ∑

αitdt =

∫
(α1 + α2 + ... + αn)dt

=

∫
α1tdt +

∫
α2tdt + ...

∫
αntdt (A.5)

=
∑∫

αitdt

A.2 Two-Parameter Weibull Moment Derivation

For a standard Weibull, the CDF is given by:

F (t|α, β) = 1 − exp
[
−

(
t
β

)α]
The PDF is the derivative of the CDF:

d
dt

F (t|α, β) = α

(
t
β

)α−1 1
β

exp
[
−

(
t
β

)α]
=
α

βα
tα−1 exp

[
−

(
t
β

)α]
= f (t|α, β)

Using E
(
tk
)

=
∞∫
0

tk f (t) dt

E
(
tk
)

=

∞∫
0

tk f (t) dt =

∞∫
0

tk α

βα
tα−1 exp

[
−

(
t
β

)α]
dt

Let u =
(

t
β

)α
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u =

(
t
β

)α
du =

α

βα
tα−1dt

Now, we multiply tk by 1 where βk

βk = 1

tk

(
βk

βk

)
= βk tk

βk = βk

(
t
β

)k

Next, we raise this to a power of 1, where α
α

= 1

βk

(
t
β

)k

= βk

( t
β

)kα/α = βk

((
t
β

)α)k/α

Since we let u =
(

t
β

)α
, we solve this for t

tk = βkuk/α

Next, we return to the integral:

∞∫
0

tk α

βα
tα−1 exp

[
−

(
t
β

)α]
dt =

∞∫
0

(
tk
) ( α
βα

tα−1dt
) (

exp
[
−

(
t
β

)α])

[=

∞∫
0

(
βku

k
α

)
(du)

(
exp [−u]

)
=

∞∫
0

βku
k
α exp [−u] du]

Then, add 0 to the exponent of u, where 0 = 1 − 1

∞∫
0

βku
k
α+1−1 exp [−u] du =

∞∫
0

βku( k
α+1)−1 exp [−u] du = βk

∞∫
0

u( k
α+1)−1 exp [−u] du

This now resembles the integral for the Gamma Distribution:

Γ (β) =

∞∫
−∞

tβ−1 exp [−t] dt

βk

∞∫
0

u( k
α+1)−1 exp [−u] du = βkΓ

(
k
α

+ 1
)
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A.3 Obtaining Statistics from Raw Moments

A.3.1 Linearity of Expected Value.

If we have a probability space (Ω,F ,P), then the Expected Value of a random variable

T : Ω→ R is defined as:

E [T ] =

∫
Ω

T (ω)dP(ω)

Recall, that it is only well-defined if the integral converges absolutely, i.e.:∫
Ω

|T (ω)|dP(ω) < ∞

If the Expected Values for T & X exists, then via the triangle inequality E [T + X] exists.

Since the integral is a Lebesgue integral, then for constants a, b ∈ R the linearity of the

Lebesgue integral can be used to conclude:

E [aT + bX] =

∫
Ω

aT+bXdP =

∫
Ω

aTdP+

∫
Ω

bXdP = a
∫

Ω

TdP+b
∫

Ω

XdP = aE [T ]+bE [X] �

A.3.2 First Four Raw Moment &Mean.

First Raw Moment: E [t] = µ (Mean)

Second Raw Moment: E
[
t2
]

Third Raw Moment: E
[
t3
]

Fourth Raw Moment: E
[
t4
]

A.3.3 First Central Moment.

The expected value

E
[
t − µ

]
= E [t] − E[µ] = E [t] − µ

A.3.4 Second Central Moment & Variance.

E
[
(t − µ)2

]
= E

[
t2 − 2tµ + µ2

]
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= E
[
t2
]
− E

[
2tµ

]
+ E

[
µ2

]
= E

[
t2
]
− 2µE [t] + µ2

= E
[
t2
]
− 2µµ + µ2

= E
[
t2
]
− 2µ2 + µ2

= E
[
t2
]
− µ2

The second central moment gives the variance.

Var[t] = E
[
t2
]
− µ2 = σ2

The standard deviation can be determined from the variance.

σ =
√

Var[t] =

√
E

[
t2] − µ2

A.3.5 Third Central Moment & Skewness.

E
[
(t − µ)3

]
= E

[
(t − µ)2 (t − µ)

]
= E

[(
t2 − 2tµ + µ2

)
(t − µ)

]
= E

[
t3 + t2µ − 2t2µ − 2tµ2 + tµ2 + µ3

]
= E

[
t3 − t2µ − tµ2 + µ3

]
= E

[
t3
]
− E

[
t2µ

]
− E

[
tµ2

]
+ E

[
µ3

]
= E

[
t3
]
− µE

[
t2
]
− µ2E [t] + µ3

= E
[
t3
]
− µE

[
t2
]
− µ2µ + µ3

= E
[
t3
]
− µE

[
t2
]

+ µ3 − µ2µ

= E
[
t3
]
− µ

(
E

[
t2
]
− µ2

)
− µ3

= E
[
t3
]
− µVar [t] − µ3
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The third central moment is used to determine skewness. The third central moment is

normalized with respect to the standard deviation cubed.

S k[t] =
E

[
t3
]
− µVar [t] − µ3

σ3

A.3.6 Fourth Central Moment & Kurtosis.

E
[
(t − µ)4

]
= E

[
(t − µ)2 (t − µ)2

]
= E

[(
t2 − 2tµ + µ2

) (
t2 − 2tµ + µ2

)]
= E

[
t4 − 2t3µ + t2µ2 − 2t3µ + 4t2µ2 − 2tµ3 + t2µ2 − 2tµ3 + µ4

]
= E

[
t4 − 4t3µ + 6t2µ2 − 4tµ3 + µ4

]
= E

[
t4
]
− E

[
4t3µ

]
+ E

[
6t2µ2

]
− E

[
4tµ3

]
+ E

[
µ4

]
= E

[
t4
]
− 4µE

[
t3
]

+ 6µ2E
[
t2
]
− 4µ3E [t] + µ4

= E
[
t4
]
− 4µE

[
t3
]

+ 6µ2E
[
t2
]
− 4µ3µ + µ4

= E
[
t4
]
− 4µE

[
t3
]

+ 6µ2E
[
t2
]
− 4µ4 + µ4

= E
[
t4
]
− 4µE

[
t3
]

+ 6µ2E
[
t2
]
− 3µ4

The fourth central moment is used to determine kurtosis. The fourth central moment is

normalized with respect to the standard deviation to the fourth power.

κ[t] =
E

[
t4
]
− 4µE

[
t3
]

+ 6µ2E
[
t2
]
− 3µ4

σ4

A.4 tri-Weibull Moment Derivation

We start with setting up the tri-Weibull distributions by setting J = 3:

f (t|α1, α2, β1, β2) = exp
−( t

α1

)β1

−

(
t
α2

)β2

−

(
t
α3

)β3
 β1tβ1−1

α
β1
1

+
β2tβ2−1

α
β2
2

+
β3tβ3−1

α
β3
3


Setting up the moment equation:
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E
(
tk
)

=

∞∫
0

tk f (t|α1, α2, β1, β2) dt

Since we know the PDF is simply the derivative of the CDF (Eq. 1.4) and the CDF is

contained in the PDF,

=

∞∫
0

tk exp
−( t

α1

)β1

−

(
t
α2

)β2

−

(
t
α3

)β3
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Next, we assign terms to u and dv and take the derivative of u and anti-derivative of dv:
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Just as with the bi-Weibull, the left-hand-side of the equation goes to 0 when the limits are

evaluated and we are left to solve only the right-hand-side.

= k
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We start with breaking up the exponents since: e
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We only apply the Taylor-Series Expansion to the second and third exponential terms. We

retain only the first exponential term to eventually build towards a gamma function the

same way the bi-Weibull was done.
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The next few steps involve algebraic manipulation to the equation to obtain a form that

resembles the gamma function, Γ (β) =
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The summation and terms not attached to the time variable t are pulled out of the integral

followed by combining the t terms.
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Next, we let u =
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, (term inside of the exponent) and take the derivative to obtain du
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This term is solved for dt and plugged into the integral along with u. The t−1 cancels with
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Now, the integral is in the form of a gamma function.
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Appendix B: Code

B.1 Mean, Variance, Skewness, & Kurtosis Code

B.1.1 bi-Weibull Taylor Series Approximation Code.

clc; clear all; close all;

% Values

a1 = 84.907; a2 = 61.663; b1 = 82.334; b2 = 0.702;

B.1.1.1 Mean.

n = 0; nn = []; delall = 1; tol = 1e-4; % setting initial count,

% creating vector, tolerance, & creating delta value

% to reset to after each loop

calc = ((a1ˆ(n*b2))/(((-a2ˆb2)ˆn)*factorial(n)))*gamma((1+n*b2)/b1);

% initial calculation for n=0

del = delall;

sumvec1 = [];

sum1 = calc; % creating initial sum value

while abs(del) > tol

sumvec1(n+1) = sum1; % adding each calculation to vector

nn(n+1) = n+1; % next value for n vector within loop

n = n+1; % next value for n within loop

calc2 = ((a1ˆ(n*b2))/(((-a2ˆb2)ˆn)*factorial(n)))*gamma((1+n*b2)/b1);
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sum1 = sum1 + calc2; % adding to sum

del = calc2 - calc; % determing difference for tolerance

calc = calc2; % changing calculated value for next delta determination

end

Et = (a1/b1)*sumvec1(end); % first raw moment

bwmean = Et; % mean for bi-Weibull

Etvec = (a1/b1)*sumvec1; % first raw moment vector

bwmeanvec = Etvec; % mean vector to see covergence

B.1.1.2 Variance.

m = 0; mm = []; % setting sum value and vector

calc3 = ((a1ˆ(m*b2))/(((-a2ˆb2)ˆm)*factorial(m)))*gamma((2+m*b2)/b1);

% initial calculation for m=0

del2 = delall;

sumvec2 = [];

sum2 = calc3; % initial value for sum

while abs(del2) > tol

sumvec2(m+1) = sum2; % adding each calculation to vector
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mm(m+1) = m+1; % adding next term for vector

m = m+1; % adding next vector

calc4 = ((a1ˆ(m*b2))/(((-a2ˆb2)ˆm)*factorial(m)))*gamma((2+m*b2)/b1);

% calculation within loop

sum2 = sum2 + calc4; % adding new calculation to sum

del2 = calc4 - calc3; % taking difference between subsequence churns

% for tolerance

calc3 = calc4; % resetting prior calculated term for tolerance determination

end

Et2 = ((2*(a1ˆ2))/b1)*sumvec2(end); % second raw moment

Et2vec = ((2*(a1ˆ2))/b1)*sumvec2; % 2nd raw moment vector

biweibvar = Et2 - Etˆ2; % variance calculation

biweibvarvec = Et2vec - bwmeanvec.ˆ2; % variance vector to determine convergence

bwsd = sqrt(biweibvar); % standard deviation calculation

bwsdvec = sqrt(biweibvarvec); % standard deviation vector for convergence

B.1.1.3 Skewness.

l = 0; ll = []; % setting sum value and vector

calc5 = ((a1ˆ(l*b2))/(((-a2ˆb2)ˆl)*factorial(l)))*gamma((3+l*b2)/b1);
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% initial calculation for l=0

del3 = delall; % setting del for new calculations

sumvec3 = []; % creating sum vector

sum3 = calc5; % setting initial sum value

while abs(del3) > tol

sumvec3(l+1) = sum3; % placing calculation into vector

ll(l+1) = l+1; % adding next term in vector

l = l+1; % adding next term for sum

calc6 = ((a1ˆ(l*b2))/(((-a2ˆb2)ˆl)*factorial(l)))*gamma((3+l*b2)/b1);

% calculation for each value of l

sum3 = sum3 + calc6; % adding to sum

del3 = calc6 - calc5;

% taking difference of subsequent calculations to check tolerace

calc5 = calc6; % resetting calculation value for next churn

end

Et3 = ((3*(a1ˆ3))/b1)*sumvec3(end); % 3rd raw moment

Et3vec = ((3*(a1ˆ3))/b1)*sumvec3; % 3rd raw moment vector
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biweibskew = (Et3-3*Et*biweibvar-Etˆ3)/bwsdˆ3; % Skewness

biweibskewvec = (Et3vec-3*Etvec.*biweibvarvec-Et.ˆ3)./bwsdvec.ˆ3;

% skewness vector for convergence

B.1.1.4 Kurtosis.

k = 0; kk = []; % setting initial value and vector

calc7 = ((a1ˆ(k*b2))/(((-a2ˆb2)ˆk)*factorial(k)))*gamma((4+k*b2)/b1);

% initial calculation

del4 = delall;

sumvec4 = []; % creating vector

sum4 = calc7; % setting first term for sum

while abs(del4) > tol

sumvec4(k+1) = sum4;

% placing calculated value into sum vector

kk(k+1) = k+1; % next value for sum vector

k = k+1; % next value for sum

calc8 = ((a1ˆ(k*b2))/(((-a2ˆb2)ˆk)*factorial(k)))*gamma((4+k*b2)/b1);

% inner loop calculation

sum4 = sum4 + calc8; % adding new calc to sum
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del4 = calc8 - calc7;

% difference of subsequent calculation for tolerance

calc7 = calc8; % resetting calculated value for next churn

end

Et4 = ((4*(a1ˆ4))/b1)*sumvec4(end); % 4th raw moment

Et4vec = ((4*(a1ˆ4))/b1)*sumvec4; % 4th raw moment vector

bwkurt = (Et4-4*Et*Et3+6*(Etˆ2)*Et2-3*Etˆ4)/bwsdˆ4; % kurtosis

bwkurtvec = (Et4vec-4*Etvec.*Et3vec+6*(Etvec.ˆ2).*Et2vec-3*Etvec.ˆ4)./bwsdvec.ˆ4;

% kurtsosis vector for convergence

B.1.1.5 Plots.

figure

plot(nn,bwmeanvec,mm,bwsdvec);

xlabel(’Iterations’)

ylabel(’\mu , \sigma’)

title(’bi-Weibull Mean & Standard Deviation Convergence’)

legend(’Mean’,’Standard Deviation’)

axis([1 length(nn) 0 100])

figure

plot(nn,bwmeanvec,mm,bwsdvec);

xlabel(’Iterations’)

ylabel(’\mu , \sigma’)

title(’bi-Weibull Mean & Standard Deviation Convergence’)
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legend(’Mean’,’Standard Deviation’)

axis([1 length(nn) 32 43])

figure

plot(mm,biweibvarvec);

xlabel(’Iterations’)

ylabel(’Var(t)’)

title(’bi-Weibull Variance Convergence’)

axis([1 length(mm) 0 1400])

figure

plot(mm,biweibvarvec);

xlabel(’Iterations’)

ylabel(’Var(t)’)

title(’bi-Weibull Variance Convergence’)

axis([1 length(mm) 1080 1082])

figure

plot(ll,biweibskewvec);

xlabel(’Iterations’)

ylabel(’sk(t)’)

title(’bi-Weibull Skewness Convergence’)

figure

plot(ll,biweibskewvec);

xlabel(’Iterations’)
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ylabel(’sk(t)’)

title(’bi-Weibull Skewness Convergence’)

axis([1 length(ll) -0.5e5 2.5e5])

figure

plot(ll,biweibskewvec);

xlabel(’Iterations’)

ylabel(’sk(t)’)

title(’bi-Weibull Skewness Convergence’)

axis([1 length(ll) -.2 .2])

figure

plot(ll,biweibskewvec);

xlabel(’Iterations’)

ylabel(’sk(t)’)

title(’bi-Weibull Skewness Convergence’)

axis([1 length(ll) .1 .15])

figure

plot(kk,bwkurtvec);

xlabel(’Iterations’)

ylabel(’\kappa’)

title(’bi-Weibull Kurtosis Convergence’)

figure

plot(kk,bwkurtvec);

75



xlabel(’Iterations’)

ylabel(’\kappa’)

title(’bi-Weibull Kurtosis Convergence’)

axis([1 length(kk) -1000 100])

figure

plot(kk,bwkurtvec);

xlabel(’Iterations’)

ylabel(’\kappa’)

title(’bi-Weibull Kurtosis Convergence’)

axis([1 length(kk) 0 2])

figure

plot(kk,bwkurtvec);

xlabel(’Iterations’)

ylabel(’\kappa’)

title(’bi-Weibull Kurtosis Convergence’)

axis([1 length(kk) 1.3 1.4])

B.1.2 tri-Weibull Taylor Series Approximation Code.

clc; clear all; close all;

% MLE Parameter Values

a1 = 85.091; a2 = 122.478; a3 = 92.999;

b1 = 98.152; b2 = 0.524; b3 = 4.215;

% Initial delta and tolerance

tol = 1e-4; delall = 1;
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B.1.2.1 Mean.

n1 = 0; nn1 = []; % creating initial values and

n2 = 0; nn2 = []; % vectors for inner and outer sum

calcm1 = ((a1ˆ(n1*b2+n2*b3))/(((-a2ˆb2)ˆn1)*((-a3ˆb3)ˆn2)*factorial(n1)

*factorial(n2)))*gamma((1+n1*b2+n2*b3)/b1);

% initial calculation for n1=0 n2=0

delm1 = delall;

outsumet1 = []; % creating initial vectors

insumet1 = [];

sumet1 = calcm1; % setting first value for sum

while abs(delm1) > tol % outer sum

nn1(n1+1) = n1+1; % next value for outer sum vector

delm2 = delall; % reset delta after loop

while abs(delm2) > tol % inner sum

insumet1(n2+1,n1+1) = sumet1; % inner sum vector

nn2(n2+1,n1+1) = n2+1; % next value for inner sum

n2 = n2+1; % next value for inner sum

calcm2 = ((a1ˆ(n1*b2+n2*b3))/(((-a2ˆb2)ˆn1)*((-a3ˆb3)ˆn2)*factorial(n1)

*factorial(n2)))*gamma((1+n1*b2+n2*b3)/b1);

% inner sum calculation
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sumet1 = sumet1 + calcm2; % adding to inner sum

delm2 = calcm2 - calcm1; % inner sum delta

calcm1 = calcm2; % setting to last calculation

end

n2 =0; % resetting inner sum to 0

outsumet1(n1+1) = sumet1; % outer sum vector

n1 = n1+1; % outer sum value change

calcm3 = ((a1ˆ(n1*b2+n2*b3))/(((-a2ˆb2)ˆn1)*((-a3ˆb3)ˆn2)*factorial(n1)

*factorial(n2)))*gamma((1+n1*b2+n2*b3)/b1);

% outer sum calculation

delm1 = calcm3 - calcm1; % check tolerance of outer sum

sumet1 = sumet1 + calcm3; % adding to total sum

calcm1 = calcm3; % set to last overall sum value

end

Et = (a1/b1)*outsumet1(find(outsumet1,1,’last’));

% 1st raw moment

twmean = Et; % mean

Etvec = (a1/b1)*outsumet1; % 1st raw moment vector

Etvec = Etvec(Etvec>0);
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twmeanvec = Etvec; % mean vector

twmeanvec = twmeanvec(twmeanvec>0);

B.1.2.2 Variance.

m1 = 0; mm1 = []; % initial values and vectors

m2 = 0; mm2 = []; % for inner and outer sum

calcv1 = ((a1ˆ(m1*b2+m2*b3))/(((-a2ˆb2)ˆm1)*((-a3ˆb3)ˆm2)*factorial(m1)

*factorial(m2)))*gamma((2+m1*b2+m2*b3)/b1);

% initial calculation for m1=0, m2=0

delv1 = delall;

outsumet2 = []; % outer sum vector

insumet2 = []; % inner sum vector

sumet2 = calcv1; % keeping initial calc for sum

while abs(delv1) > tol

mm1(m1+1) = m1+1; % next number for outer sum vector

delv2 = delall; % resetting delta for inner sum

while abs(delv2) > tol

insumet2(m2+1,m1+1) = sumet2;

% saving calculation for inner sum vector

mm2(m2+1,m1+1) = m2+1; % next inner sum vector

m2 = m2+1; % setting next number for calc
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calcv2 = ((a1ˆ(m1*b2+m2*b3))/(((-a2ˆb2)ˆm1)*((-a3ˆb3)ˆm2)*factorial(m1)

*factorial(m2)))*gamma((2+m1*b2+m2*b3)/b1);

% inner sum calculation

sumet2 = sumet2 + calcv2; % adding to inner sum

delv2 = calcv2 - calcv1;

% delta for inner sum to check tolerance

calcv1= calcv2; % setting to last calculated value

end

m2 =0; % resetting inner sum value

outsumet2(m1+1) = sumet2;

% saving value for outer sum vector

m1 = m1+1; % next value for outer sum

calcv3 = ((a1ˆ(m1*b2+m2*b3))/(((-a2ˆb2)ˆm1)*((-a3ˆb3)ˆm2)*factorial(m1)

*factorial(m2)))*gamma((2+m1*b2+m2*b3)/b1);

% outer sum calculation with next value

sumet2 = sumet2 + calcv3; % adding to total sum

delv1 = calcv3 - calcv1;

% overall delta to check tolerance

calcv1 = calcv3; % setting to last calculated value

end

Et2 = ((2*(a1ˆ2))/b1)*outsumet2(find(outsumet2,1,’last’));
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twvar = Et2 - Etˆ2;

outsumet22 = outsumet2(outsumet2>0);

Et2vec = ((2*(a1ˆ2))/b1)*outsumet22;

twvarvec = Et2vec - Etvec(1:length(Et2vec)).ˆ2;

twsd = sqrt(twvar);

twsdvec = sqrt(twvarvec);

twvarvecin = ((2*(a1ˆ2))/b1)*insumet2 - Etˆ2;

twvarvecin = twvarvecin.*(twvarvecin>0);

twsdvecin = real(sqrt(twvarvecin));

B.1.2.3 Skewness.

l1 = 0; ll1 = []; % creating initial sum values and

l2 = 0; ll2 = []; % vector for inner and outer sum

calcs1 = ((a1ˆ(l1*b2+l2*b3))/(((-a2ˆb2)ˆl1)*((-a3ˆb3)ˆl2)*factorial(l1)

*factorial(l2)))*gamma((3+l1*b2+l2*b3)/b1);

% initial calculation for l1=0 and l2=0

dels1 = delall;

outsumet3 = [];

insumet3 = [];

sumet3 = calcs1; % setting initial value in sum

while abs(dels1) > tol

ll1(l1+1) = l1+1; % setting next vector value
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dels2 = delall; % resetting inner sum delta

while abs(dels2) > tol

insumet3(l2+1,l1+1) = sumet3;

% saving inner sum vector

ll2(l2+1,l1+1) = l2+1;

% next value for inner sum vector

l2 = l2+1; % next value for inner sum calculation

calcs2 = ((a1ˆ(l1*b2+l2*b3))/(((-a2ˆb2)ˆl1)*((-a3ˆb3)ˆl2)*factorial(l1)

*factorial(l2)))*gamma((3+l1*b2+l2*b3)/b1);

% inner sum calculation

sumet3 = sumet3 + calcs2; % adding to inner sum

dels2 = calcs2 - calcs1;

% delta for inner sum tolerance check

calcs1 = calcs2;

% setting to new inner sum calculation

end

l2 =0; % resetting inner sum value

outsumet3(l1+1) = sumet3; % outer sum vector value change

l1 = l1+1; % updating outer sum value

calcs3 = ((a1ˆ(l1*b2+l2*b3))/(((-a2ˆb2)ˆl1)*((-a3ˆb3)ˆl2)*factorial(l1)
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*factorial(l2)))*gamma((3+l1*b2+l2*b3)/b1);

% outer sum calculation

sumet3 = sumet3 + calcs3; % adding to overall sum

dels1 = calcs3 - calcs1;

% outer sum delta for tolerance check

calcs1 = calcs3; % updating for delta

end

Et3 = ((3*(a1ˆ3))/b1)*outsumet3(find(outsumet3,1,’last’));

twsk = (Et3-3*Et*twvar-Etˆ3)/twsdˆ3;

sumskvec3 = outsumet3(outsumet3>0);

Et3vec = ((3*(a1ˆ3))/b1)*sumskvec3;

twskvec = (Et3vec-3*Etvec(1:length(Et3vec)).*twvarvec

-Etvec(1:length(Et3vec)).ˆ3)./twsdvec.ˆ3;

Et3vecin = ((3*(a1ˆ3))/b1)*insumet3;

twskvecin = (Et3vecin-3*Et*twvar-Etˆ3)./twsdvecin.ˆ3;

B.1.2.4 Kurtosis.

kk = 0; kk1 = []; % initial values and vector for

k2 = 0; kk2 = []; % inner and outer sum

calck1 = ((a1ˆ(kk*b2+k2*b3))/(((-a2ˆb2)ˆkk)*((-a3ˆb3)ˆk2)*factorial(kk)

*factorial(k2)))*gamma((4+kk*b2+k2*b3)/b1);

% initial calculation for k1=0 and k2=0
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delk1 = delall; %calculate n1=0,n2=0

outsumet4 = []; % creating vector for outer sums

insumet4 = []; % creating vector for inner sums

sumet4 = calck1; % setting initial value in sum

while abs(delk1) > tol

kk1(kk+1) = kk+1; % next value in outer sum vector

delk2 = delall; % resetting delta for inner sum

while abs(delk2) > tol

insumet4(k2+1,kk+1) = sumet4;

% saving inner sum value to vector

kk2(k2+1,kk+1) = k2+1; %setting next vector value

k2 = k2+1;

% moving to next number in sum calculation

calck2 = ((a1ˆ(kk*b2+k2*b3))/(((-a2ˆb2)ˆkk)*((-a3ˆb3)ˆk2)*factorial(kk)

*factorial(k2)))*gamma((4+kk*b2+k2*b3)/b1);

% inner sum calculation

sumet4 = sumet4 + calck2; % adding to inner sum

delk2 = calck2 - calck1;

% delta for inner some tolerance check

calck1 = calck2;

% setting to last calculation for next delta check
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end

k2 =0; % resetting inner sum value

outsumet4(kk+1) = sumet4;

% setting outer sum value for vector

kk = kk+1; % moving to next outer sum value

calck3 = ((a1ˆ(kk*b2+k2*b3))/(((-a2ˆb2)ˆkk)*((-a3ˆb3)ˆk2)*factorial(kk)

*factorial(k2)))*gamma((4+kk*b2+k2*b3)/b1);

% outer sum calculation

sumet4 = sumet4 + calck3; % adding to total sum

delk1 = calck3 - calck1;

% delta taken for outer sum tolerance check

calck1 = calck3;

% setting to most recent calculation for next tolerance check

end

Et4 = ((4*(a1ˆ4))/b1)*outsumet4(find(outsumet4,1,’last’));

twkurt = (Et4-4*Et*Et3+6*(Etˆ2)*Et2-3*Etˆ4)/twsdˆ4;

sumkurtvec3 = outsumet4(outsumet4>0);

Et4vec = ((4*(a1ˆ4))/b1)*sumkurtvec3;

twkurtvec = (Et4vec-4*Etvec(1:length(Et4vec)).*Et3vec

+6*(Etvec(1:length(Et4vec)).ˆ2).*Et2vec

-3*Etvec(1:length(Et4vec)).ˆ4)./twsdvec.ˆ4;
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Et4vec22 = ((4*(a1ˆ4))/b1)*insumet4;

sumkurtvec22 = (Et4vec22-4*Et*Et3+6*(Etˆ2)*Et2-3*Etˆ4)/twsdˆ4;

B.1.2.5 Plots.

figure

plot(nn1(1:length(twmeanvec)),twmeanvec,mm1(1:length(twsdvec)),twsdvec);

xlabel(’Iterations’)

ylabel(’\mu , \sigma’)

title(’tri-Weibull Mean & Standard Deviation Convergence’)

legend(’Mean’,’Standard Deviation’)

figure

plot(mm1(1:length(twvarvec)),twvarvec);

xlabel(’Iterations’)

ylabel(’Var(t)’)

title(’tri-Weibull Variance Convergence’)

axis([1 length(twvarvec) 0 1200])

figure

plot(ll1(1:length(twskvec)),twskvec);

xlabel(’Iterations’)

ylabel(’sk(t)’)

title(’tri-Weibull Skewness Convergence’)

figure
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plot(kk1(1:length(twkurtvec)),twkurtvec);

xlabel(’Iterations’)

ylabel(’\kappa’)

title(’tri-Weibull Kurtosis Convergence’)

N=nn2(:,1);

A=insumet1(:,1);A=A(A>0);B=insumet1(:,2);B=B(B>0);C=insumet1(:,3);C+C(C>0);

D=insumet1(:,4);D=D(D>0);E=insumet1(:,5);E=E(E>0);F=insumet1(:,6);F=F(F>0);

G=insumet1(:,7);G=G(G>0);H=insumet1(:,8);H=H(H>0);I=insumet1(:,9);I=I(I>0);

figure

plot(N(A>0),A,N(B>0),B,N(C>0),C,N(D>0),D,N(E>0),E,N(F>0),F,N(G>0),G,N(H>0),H,N(I>0),I);

xlabel(’Iterations’)

ylabel(’\mu’)

title(’tri-Weibull Mean Convergence’)

legend(’n_1=0’,’n_1=1’,’n_1=2’,’n_1=3’,’n_1=4’,’n_1=5’,’n_1=6’,’n_1=7’,’n_1=8’)

legend(’location’,’northeast’)

M=mm2(:,1);

A2=twvarvecin(:,1);A2=A2(A2>0);B2=twvarvecin(:,2);B2=B2(B2>0);

C2=twvarvecin(:,3);C2=C2(C2>0);D2=twvarvecin(:,4);D2=D2(D2>0);

E2=twvarvecin(:,5);E2=E2(E2>0);F2=twvarvecin(:,6);F2=F2(F2>0);

G2=twvarvecin(:,7);G2=G2(G2>0);H2=twvarvecin(:,8);H2=H2(H2>0);

figure

plot(M(A2>0),A2,M(B2>0),B2,M(C2>0),C2,M(D2>0),D2,M(E2>0),E2,M(F2>0),F2,M(G2>0),G2,M(H2>0),H2);

xlabel(’Iterations’)
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ylabel(’Var(t)’)

title(’tri-Weibull Variance Convergence’)

legend(’n_1=0’,’n_1=1’,’n_1=2’,’n_1=3’,’n_1=4’,’n_1=5’,’n_1=6’,’n_1=7’)

legend(’location’,’northeast’)

A3=twsdvecin(:,1);A3=A3(A3>0);B3=twsdvecin(:,2);B3=B3(B3>0);

C3=twsdvecin(:,3);C3=C3(C3>0);D3=twsdvecin(:,4);D3=D3(D3>0);

E3=twsdvecin(:,5);E3=E3(E3>0);F3=twsdvecin(:,6);F3=F3(F3>0);

G3=twsdvecin(:,7);G3=G3(G3>0);H3=twsdvecin(:,8);H3=H3(H3>0);

figure

plot(M(A3>0),A3,M(B3>0),B3,M(C3>0),C3,M(D3>0),D3,M(E3>0),E3,M(F3>0),F3,M(G3>0),G3,M(H3>0),H3);

xlabel(’Iterations’)

ylabel(’\sigma’)

title(’tri-Weibull Standard Deviation Convergence’)

legend(’n_1=0’,’n_1=1’,’n_1=2’,’n_1=3’,’n_1=4’,’n_1=5’,’n_1=6’,’n_1=7’)

legend(’location’,’northeast’)

L=ll2(:,1);

A4=twskvecin(:,1);B4=twskvecin(:,2);C4=twskvecin(:,3);

D4=twskvecin(1:7,4);E4=twskvecin(1:6,5);F4=twskvecin(1:6,6);

G4=twskvecin(1:5,7);H4=twskvecin(1:3,8);
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figure

plot(L,A4,L,B4,L,C4,L(1:7),D4,L(1:6),E4,L(1:6),F4,L(1:5),G4,L(1:3),H4);

xlabel(’Iterations’)

ylabel(’sk(t)’)

title(’tri-Weibull Skewness Convergence’)

legend(’n_1=0’,’n_1=1’,’n_1=2’,’n_1=3’,’n_1=4’,’n_1=5’,’n_1=6’,’n_1=7’)

legend(’location’,’northeast’)

figure

plot(L,A4,L,B4,L,C4,L(1:7),D4,L(1:6),E4,L(1:6),F4,L(1:5),G4,L(1:3),H4);

xlabel(’Iterations’)

ylabel(’sk(t)’)

title(’tri-Weibull Skewness Convergence’)

legend(’n_1=0’,’n_1=1’,’n_1=2’,’n_1=3’,’n_1=4’,’n_1=5’,’n_1=6’,’n_1=7’)

legend(’location’,’northeast’)

axis([1 length(L) -1 1.1])

K=kk2(:,1);

A5=sumkurtvec22(:,1);B5=sumkurtvec22(:,2);C5=sumkurtvec22(:,3);

D5=sumkurtvec22(1:7,4);E5=sumkurtvec22(1:6,5);F5=sumkurtvec22(1:6,6);

G5=sumkurtvec22(1:5,7);H5=sumkurtvec22(1:3,8);

figure

plot(K,A5,K,B5,K,C5,K(1:7),D5,K(1:6),E5,K(1:6),F5,K(1:5),G5,K(1:3),H5);

xlabel(’Iterations’)
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ylabel(’\kappa’)

title(’tri-Weibull Kurtosis Convergence’)

legend(’n_1=0’,’n_1=1’,’n_1=2’,’n_1=3’,’n_1=4’,’n_1=5’,’n_1=6’,’n_1=7’)

legend(’location’,’northeast’)

B.1.3 bi-Weibull Numerical Integration Code.

bw_moment <- function(k = 1) {

a1 = 84.907 ; b1 = 82.334

a2 = 61.663 ; b2 = 0.702

fun <- function(t) {

term1 <- t ˆ (k - 1)

term2 <- exp(-(t / 84.907) ˆ 82.334 - (t / 61.663) ˆ 0.702)

return(term1 * term2)

}

zout <- list()

zout$int_full <- integrate(f = fun, lower = 0, upper = Inf)

zout$int_value <- zout$int_full$value * k

return(zout)

}
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B.1.4 tri-Weibull Numerical Integration Code.

tw_moment <- function(k = 1) {

a1 = 85.091 ; b1 = 98.152

a2 = 122.4787 ; b2 = 0.524

a3 = 92.299 ; b3 = 4.215

fun <- function(t) {

term1 <- t ˆ (k - 1)

term2 <- exp(-(t / a1) ˆ b1 - (t / a2) ˆ b2 - (t / a3) ˆ b3)

return(term1 * term2)

}

zout <- list()

zout$int_full <- integrate(f = fun, lower = 0, upper = Inf)

zout$int_value <- zout$int_full$value * k

return(zout)

}

B.1.5 New Modified Weibull Numerical Integration Code.

nmw_moment <- function(k = 1) {
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a = 0.071 ; l = 0.197

B = 7.015e-8 ; Y = 0.016

O = 0.595

fun <- function(t) {

term1 <- t ˆ (k - 1)

term2 <- exp(-a * t ˆ O - B * t ˆ Y * exp(l * t))

return(term1 * term2)

}

zout <- list()

zout$int_full <- integrate(f = fun, lower = 0, upper = Inf)

zout$int_value <- zout$int_full$value * k

return(zout)

}

B.1.6 Exponentiated Modified Weibull Extension Numerical Integration Code.

emwe_moment <- function(k = 1) {

a = 49.050 ; l = 7.18e-5

B = 3.148 ; Y = 0.145
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fun <- function(t) {

term1 <- t ˆ (k+B-1)

term2 <- exp((t / a) ˆ B + l * a * (1 - exp((t / a) ˆ B)))

term3 <- (1 - exp(l * a * (1 - exp((t / a) ˆ B)))) ˆ (Y - 1)

term4 <- (l*B*Y) / (a ˆ (B-1))

return(term1 * term2 * term3 * term4)

}

zout <- list()

zout$int_full <- integrate(f = fun, lower = 0, upper = Inf)

zout$int_value <- zout$int_full$value

return(zout)

}
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Appendix C: List of Acronyms

AAG Advanced Arresting Gear
AIC Akaike Information Criterion

BMW Beta Modified Weibull
CFR constant failure rate
CDF Cumulative Distribution Function
DFR decreasing failure rate
DoD Department of Defense

EMWE Exponentiated Modified Weibull Extension
EMALS Electromagnetic-Powered Aircraft Launch System

FY Fiscal Year
FMEA Failure Modes Effects & Analysis

FMECA Failure Mode, Effects, & Criticality Analysis
IFR increasing failure rate
K-S Kolmogorov-Smirnov Test

LFR Linear Failure Rate
MDAPs Major Defense Acquisition Programs

MLE Maximum Likelihood Estimation
MTTF Mean Time to Failure

MW Modified Weibull
NMW New Modified Weibull

PDF Probability Density Function
RAM Reliability, Availability, & Maintainability

RDT&E Research, Development, Test, & Evaluation
RPA Remotely Piloted Aircraft
S&T Science & Technology

CVN 78 USS Gerald Ford
CVN 79 USS John F. Kennedy
CVN 80 USS Enterprise

WPP Weibull Probability Paper
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